IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1407.8300.html
   My bibliography  Save this paper

Optimization of relative arbitrage

Author

Listed:
  • Ting-Kam Leonard Wong

Abstract

In stochastic portfolio theory, a relative arbitrage is an equity portfolio which is guaranteed to outperform a benchmark portfolio over a finite horizon. When the market is diverse and sufficiently volatile, and the benchmark is the market or a buy-and-hold portfolio, functionally generated portfolios introduced by Fernholz provide a systematic way of constructing relative arbitrages. In this paper we show that if the market portfolio is replaced by the equal or entropy weighted portfolio among many others, no relative arbitrages can be constructed under the same conditions using functionally generated portfolios. We also introduce and study a shaped-constrained optimization problem for functionally generated portfolios in the spirit of maximum likelihood estimation of a log-concave density.

Suggested Citation

  • Ting-Kam Leonard Wong, 2014. "Optimization of relative arbitrage," Papers 1407.8300, arXiv.org, revised Nov 2014.
  • Handle: RePEc:arx:papers:1407.8300
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1407.8300
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adrian Banner & Daniel Fernholz, 2008. "Short-term relative arbitrage in volatility-stabilized markets," Annals of Finance, Springer, vol. 4(4), pages 445-454, October.
    2. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    3. Robert Fernholz & Ioannis Karatzas & Constantinos Kardaras, 2005. "Diversity and relative arbitrage in equity markets," Finance and Stochastics, Springer, vol. 9(1), pages 1-27, January.
    4. Winslow Strong, 2012. "Generalizations of Functionally Generated Portfolios with Applications to Statistical Arbitrage," Papers 1212.1877, arXiv.org, revised Oct 2013.
    5. Daniel Fernholz & Ioannis Karatzas, 2010. "On optimal arbitrage," Papers 1010.4987, arXiv.org.
    6. Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi‐dimensional log‐concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607, November.
    7. Robert Fernholz, 1999. "Portfolio Generating Functions," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar, chapter 15, pages 344-367, World Scientific Publishing Co. Pte. Ltd..
    8. Robert Fernholz & Ioannis Karatzas, 2005. "Relative arbitrage in volatility-stabilized markets," Annals of Finance, Springer, vol. 1(2), pages 149-177, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Vervuurt, 2015. "Topics in Stochastic Portfolio Theory," Papers 1504.02988, arXiv.org.
    2. Ting-Kam Wong, 2015. "Optimization of relative arbitrage," Annals of Finance, Springer, vol. 11(3), pages 345-382, November.
    3. Soumik Pal & Ting-Kam Leonard Wong, 2014. "The geometry of relative arbitrage," Papers 1402.3720, arXiv.org, revised Jul 2015.
    4. Christa Cuchiero, 2017. "Polynomial processes in stochastic portfolio theory," Papers 1705.03647, arXiv.org.
    5. Alexander Schied & Leo Speiser & Iryna Voloshchenko, 2016. "Model-free portfolio theory and its functional master formula," Papers 1606.03325, arXiv.org, revised May 2018.
    6. Ting-Kam Leonard Wong, 2017. "On portfolios generated by optimal transport," Papers 1709.03169, arXiv.org, revised Sep 2017.
    7. Alexander Vervuurt & Ioannis Karatzas, 2015. "Diversity-weighted portfolios with negative parameter," Annals of Finance, Springer, vol. 11(3), pages 411-432, November.
    8. Soumik Pal & Ting-Kam Leonard Wong, 2016. "Exponentially concave functions and a new information geometry," Papers 1605.05819, arXiv.org, revised May 2017.
    9. E. Robert Fernholz & Ioannis Karatzas & Johannes Ruf, 2016. "Volatility and Arbitrage," Papers 1608.06121, arXiv.org.
    10. Winslow Strong, 2012. "Generalizations of Functionally Generated Portfolios with Applications to Statistical Arbitrage," Papers 1212.1877, arXiv.org, revised Oct 2013.
    11. Winslow Strong & Jean-Pierre Fouque, 2011. "Diversity and arbitrage in a regulatory breakup model," Annals of Finance, Springer, vol. 7(3), pages 349-374, August.
    12. Soumik Pal, 2016. "Exponentially concave functions and high dimensional stochastic portfolio theory," Papers 1603.01865, arXiv.org, revised Mar 2016.
    13. Aleksandar Mijatović & Mikhail Urusov, 2012. "Deterministic criteria for the absence of arbitrage in one-dimensional diffusion models," Finance and Stochastics, Springer, vol. 16(2), pages 225-247, April.
    14. Andrey Sarantsev, 2014. "On a class of diverse market models," Annals of Finance, Springer, vol. 10(2), pages 291-314, May.
    15. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2020. "Deep Learning for Portfolio Optimization," Papers 2005.13665, arXiv.org, revised Jan 2021.
    16. Robert Fernholz, 2015. "An example of short-term relative arbitrage," Papers 1510.02292, arXiv.org.
    17. Ioannis Karatzas & Johannes Ruf, 2016. "Trading Strategies Generated by Lyapunov Functions," Papers 1603.08245, arXiv.org.
    18. Alexander Vervuurt & Ioannis Karatzas, 2015. "Diversity-Weighted Portfolios with Negative Parameter," Papers 1504.01026, arXiv.org, revised Jul 2015.
    19. Winslow Strong, 2014. "Fundamental theorems of asset pricing for piecewise semimartingales of stochastic dimension," Finance and Stochastics, Springer, vol. 18(3), pages 487-514, July.
    20. Ioannis Karatzas & Johannes Ruf, 2017. "Trading strategies generated by Lyapunov functions," Finance and Stochastics, Springer, vol. 21(3), pages 753-787, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1407.8300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.