IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v69y2007i2p185-198.html
   My bibliography  Save this article

On fast computation of the non‐parametric maximum likelihood estimate of a mixing distribution

Author

Listed:
  • Yong Wang

Abstract

Summary. A fast algorithm for computing the non‐parametric maximum likelihood estimate of a mixing distribution is presented. At each iteration, the algorithm adds new important points to the support set as guided by the gradient function, updates all mixing proportions via a quadratically convergent method and discards redundant support points straightaway. With its convergence being theoretically established, numerical studies show that it is very fast and stable, compared with several other algorithms that are available in the literature.

Suggested Citation

  • Yong Wang, 2007. "On fast computation of the non‐parametric maximum likelihood estimate of a mixing distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 185-198, April.
  • Handle: RePEc:bla:jorssb:v:69:y:2007:i:2:p:185-198
    DOI: 10.1111/j.1467-9868.2007.00583.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2007.00583.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2007.00583.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yong, 2008. "Dimension-reduced nonparametric maximum likelihood computation for interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2388-2402, January.
    2. Chung, Yeojin & Lindsay, Bruce G., 2015. "Convergence of the EM algorithm for continuous mixing distributions," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 190-195.
    3. Xiang, Sijia & Yao, Weixin & Seo, Byungtae, 2016. "Semiparametric mixture: Continuous scale mixture approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 413-425.
    4. Wang, Yong, 2010. "Fisher scoring: An interpolation family and its Monte Carlo implementations," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1744-1755, July.
    5. Ryan Martin, 2021. "A Survey of Nonparametric Mixing Density Estimation via the Predictive Recursion Algorithm," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 97-121, May.
    6. Tzougas, George & Karlis, Dimitris & Frangos, Nicholas, 2017. "Confidence intervals of the premiums of optimal Bonus Malus Systems," LSE Research Online Documents on Economics 70926, London School of Economics and Political Science, LSE Library.
    7. Xu, Danli & Wang, Yong, 2023. "Density estimation for spherical data using nonparametric mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    8. Seo, Byungtae, 2017. "The doubly smoothed maximum likelihood estimation for location-shifted semiparametric mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 27-39.
    9. Chee, Chew-Seng & Wang, Yong, 2016. "Nonparametric estimation of species richness using discrete k-monotone distributions," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 107-118.
    10. Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi‐dimensional log‐concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607, November.
    11. Chee, Chew-Seng & Seo, Byungtae, 2020. "Semiparametric estimation for linear regression with symmetric errors," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    12. Balabdaoui, Fadoua & Kulagina, Yulia, 2020. "Completely monotone distributions: Mixing, approximation and estimation of number of species," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    13. Seo, Byungtae & Ha, Il Do, 2024. "Semiparametric accelerated failure time models under unspecified random effect distributions," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).
    14. Zhiyue Huang & Paul Marriott, 2016. "Parameterizing mixture models with generalized moments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 269-297, April.
    15. Chee, Chew-Seng, 2017. "A mixture model-based nonparametric approach to estimating a count distribution," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 34-44.
    16. Brentnall, Adam R. & Crowder, Martin J. & Hand, David J., 2011. "Approximate repeated-measures shrinkage," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1150-1159, February.
    17. Chee, Chew-Seng & Wang, Yong, 2014. "Least squares estimation of a k-monotone density function," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 209-216.
    18. Chee, Chew-Seng & Wang, Yong, 2013. "Minimum quadratic distance density estimation using nonparametric mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 1-16.
    19. Martin, Ryan & Han, Zhen, 2016. "A semiparametric scale-mixture regression model and predictive recursion maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 75-85.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:69:y:2007:i:2:p:185-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.