IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v150y2020ics0167947320301055.html
   My bibliography  Save this article

Completely monotone distributions: Mixing, approximation and estimation of number of species

Author

Listed:
  • Balabdaoui, Fadoua
  • Kulagina, Yulia

Abstract

The problem of species richness estimation using complete monotonicity of the distribution of species abundances is considered. Complete monotonicity is the most natural surrogate for k-monotonicity when k is large. The latter model has been considered in the same estimation problem adopting two different approaches which both necessitate selecting the unknown degree of monotonicity k via some chosen criterion. It is shown that such selection procedures can be avoided by appropriately approximating the true completely monotone distribution by a kn-monotone one such that kn grows logarithmically as a function of the sample size n. Furthermore, the proposed estimator of the true total number of species is proved to be asymptotically normal. An extended simulation study indicates that it is quite competitive when compared to other available estimators, and this remains true even when complete monotonicity is not satisfied. It is further illustrated how the method can be applied in practice by using four real datasets.

Suggested Citation

  • Balabdaoui, Fadoua & Kulagina, Yulia, 2020. "Completely monotone distributions: Mixing, approximation and estimation of number of species," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:csdana:v:150:y:2020:i:c:s0167947320301055
    DOI: 10.1016/j.csda.2020.107014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320301055
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giguelay, J. & Huet, S., 2018. "Testing k-monotonicity of a discrete distribution. Application to the estimation of the number of classes in a population," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 96-115.
    2. Dankmar Böhning & Ronny Kuhnert, 2006. "Equivalence of Truncated Count Mixture Distributions and Mixtures of Truncated Count Distributions," Biometrics, The International Biometric Society, vol. 62(4), pages 1207-1215, December.
    3. Anne Chao & John Bunge, 2002. "Estimating the Number of Species in a Stochastic Abundance Model," Biometrics, The International Biometric Society, vol. 58(3), pages 531-539, September.
    4. Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi‐dimensional log‐concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607, November.
    5. Piet Groeneboom & Geurt Jongbloed & Jon A. Wellner, 2008. "The Support Reduction Algorithm for Computing Non‐Parametric Function Estimates in Mixture Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 385-399, September.
    6. Zhiyi Zhang & Michael Grabchak, 2016. "Entropic representation and estimation of diversity indices," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 563-575, September.
    7. Chee, Chew-Seng & Wang, Yong, 2016. "Nonparametric estimation of species richness using discrete k-monotone distributions," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 107-118.
    8. Yong Wang, 2007. "On fast computation of the non‐parametric maximum likelihood estimate of a mixing distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 185-198, April.
    9. Fadoua Balabdaoui & Hanna Jankowski & Kaspar Rufibach & Marios Pavlides, 2013. "Asymptotics of the discrete log-concave maximum likelihood estimator and related applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 769-790, September.
    10. repec:dau:papers:123456789/11474 is not listed on IDEAS
    11. Durot, Cécile & Huet, Sylvie & Koladjo, François & Robin, Stéphane, 2013. "Least-squares estimation of a convex discrete distribution," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 282-298.
    12. Zhiyi Zhang & Chen Chen & Jialin Zhang, 2020. "Estimation of population size in entropic perspective," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(2), pages 307-324, January.
    13. Balabdaoui, Fadoua & Durot, Cécile & Koladjo, Babagnidé François, 2018. "Testing convexity of a discrete distribution," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 8-13.
    14. Cécile Durot & Sylvie Huet & François Koladjo & Stéphane Robin, 2015. "Nonparametric species richness estimation under convexity constraint," Environmetrics, John Wiley & Sons, Ltd., vol. 26(7), pages 502-513, November.
    15. Claude Lefèvre & Stéphane Loisel, 2013. "On multiply monotone distributions, continuous or discrete, with applications," Post-Print hal-00750562, HAL.
    16. repec:dau:papers:123456789/4650 is not listed on IDEAS
    17. Wang, Ji-Ping Z. & Lindsay, Bruce G., 2005. "A Penalized Nonparametric Maximum Likelihood Approach to Species Richness Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 942-959, September.
    18. Fadoua Balabdaoui & Jon A. Wellner, 2010. "Estimation of a k‐monotone density: characterizations, consistency and minimax lower bounds," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(1), pages 45-70, February.
    19. Vaart,A. W. van der, 1998. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521496032.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giguelay, J. & Huet, S., 2018. "Testing k-monotonicity of a discrete distribution. Application to the estimation of the number of classes in a population," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 96-115.
    2. Durot, Cécile & Huet, Sylvie & Koladjo, François & Robin, Stéphane, 2013. "Least-squares estimation of a convex discrete distribution," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 282-298.
    3. Chee, Chew-Seng & Wang, Yong, 2016. "Nonparametric estimation of species richness using discrete k-monotone distributions," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 107-118.
    4. Balabdaoui, Fadoua & Durot, Cécile & Koladjo, Babagnidé François, 2018. "Testing convexity of a discrete distribution," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 8-13.
    5. repec:jss:jstsof:40:i09 is not listed on IDEAS
    6. Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi‐dimensional log‐concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607, November.
    7. Battey, Heather & Linton, Oliver, 2014. "Nonparametric estimation of multivariate elliptic densities via finite mixture sieves," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 43-67.
    8. Seungchul Baek & Junyong Park, 2022. "A computationally efficient approach to estimating species richness and rarefaction curve," Computational Statistics, Springer, vol. 37(4), pages 1919-1941, September.
    9. Feng, Oliver Y. & Chen, Yining & Han, Qiyang & Carroll, Raymond J & Samworth, Richard J., 2022. "Nonparametric, tuning-free estimation of S-shaped functions," LSE Research Online Documents on Economics 111889, London School of Economics and Political Science, LSE Library.
    10. Azadbakhsh, Mahdis & Jankowski, Hanna & Gao, Xin, 2014. "Computing confidence intervals for log-concave densities," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 248-264.
    11. Chee, Chew-Seng, 2017. "A mixture model-based nonparametric approach to estimating a count distribution," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 34-44.
    12. Dümbgen, Lutz & Mösching, Alexandre & Strähl, Christof, 2021. "Active set algorithms for estimating shape-constrained density ratios," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    13. Yang Liu & Rong Kuang & Guanfu Liu, 2024. "Penalized likelihood inference for the finite mixture of Poisson distributions from capture-recapture data," Statistical Papers, Springer, vol. 65(5), pages 2751-2773, July.
    14. Fadoua Balabdaoui, 2014. "Global convergence of the log-concave MLE when the true distribution is geometric," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 21-59, March.
    15. Yining Chen & Richard J. Samworth, 2016. "Generalized additive and index models with shape constraints," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 729-754, September.
    16. Chee, Chew-Seng & Wang, Yong, 2013. "Minimum quadratic distance density estimation using nonparametric mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 1-16.
    17. Chee, Chew-Seng & Wang, Yong, 2014. "Least squares estimation of a k-monotone density function," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 209-216.
    18. Zhang, Jialin & Shi, Jingyi, 2024. "Nonparametric clustering of discrete probability distributions with generalized Shannon’s entropy and heatmap," Statistics & Probability Letters, Elsevier, vol. 208(C).
    19. Bruffaerts, C. & De Rock, B. & Dehon, C., 2013. "The robustness of the hyperbolic efficiency estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 349-363.
    20. Zhang, Hongmei & Ghosh, Kaushik & Ghosh, Pulak, 2012. "Sampling designs via a multivariate hypergeometric-Dirichlet process model for a multi-species assemblage with unknown heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2562-2573.
    21. repec:jss:jstsof:36:i02 is not listed on IDEAS
    22. Yining Chen, 2015. "Semiparametric Time Series Models with Log-concave Innovations: Maximum Likelihood Estimation and its Consistency," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 1-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:150:y:2020:i:c:s0167947320301055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.