IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01616187.html
   My bibliography  Save this paper

Robust and bias-corrected estimation of the probability of extreme failure sets

Author

Listed:
  • Christophe Dutang

    (LMM - Laboratoire Manceau de Mathématiques - UM - Le Mans Université)

  • Yuri Goegebeur

    (IMADA - Department of Mathematics and Computer Science [Odense] - SDU - University of Southern Denmark)

  • Armelle Guillou

    (IRMA - Institut de Recherche Mathématique Avancée - UNISTRA - Université de Strasbourg - CNRS - Centre National de la Recherche Scientifique)

Abstract

In multivariate extreme value statistics, the estimation of probabilities of extreme failure sets is an important problem, with practical relevance for applications in several scientific disciplines. Some estimators have been introduced in the literature, though so far the typical bias issues that arise in application of extreme value methods and the non-robustness of such methods with respect to outliers were not addressed. We introduce a bias-corrected and robust estimator for small tail probabilities. The estimator is obtained from a second order model that is fitted to properly transformed bivariate observations by means of the minimum density power divergence technique. The asymptotic properties are derived under some mild regularity conditions and the finite sample performance is evaluated through an extensive simulation study. We illustrate the practical applicability of the method on a dataset from the actuarial context.

Suggested Citation

  • Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and bias-corrected estimation of the probability of extreme failure sets," Post-Print hal-01616187, HAL.
  • Handle: RePEc:hal:journl:hal-01616187
    DOI: 10.1007/s13171-015-0078-3
    Note: View the original document on HAL open archive server: https://hal.science/hal-01616187
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01616187/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s13171-015-0078-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kim, Moosup & Lee, Sangyeol, 2008. "Estimation of a tail index based on minimum density power divergence," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2453-2471, November.
    2. Beirlant, J. & Dierckx, G. & Guillou, A., 2011. "Bias-reduced estimators for bivariate tail modelling," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 18-26, July.
    3. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    4. Beirlant, J. & Vandewalle, B., 2002. "Some comments on the estimation of a dependence index in bivariate extreme value statistics," Statistics & Probability Letters, Elsevier, vol. 60(3), pages 265-278, December.
    5. Yuri Goegebeur & Armelle Guillou, 2013. "Asymptotically Unbiased Estimation of the Coefficient of Tail Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 174-189, March.
    6. Alexandra Ramos & Anthony Ledford, 2009. "A new class of models for bivariate joint tails," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 219-241, January.
    7. Goedele Dierckx & Yuri Goegebeur & Armelle Guillou, 2014. "Local robust and asymptotically unbiased estimation of conditional Pareto-type tails," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 330-355, June.
    8. Dierckx, Goedele & Goegebeur, Yuri & Guillou, Armelle, 2013. "An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 70-86.
    9. Anthony W. Ledford & Jonathan A. Tawn, 1997. "Modelling Dependence within Joint Tail Regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 475-499.
    10. Peng, L., 1999. "Estimation of the coefficient of tail dependence in bivariate extremes," Statistics & Probability Letters, Elsevier, vol. 43(4), pages 399-409, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and Bias-Corrected Estimation of the Probability of Extreme Failure Sets," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 52-86, February.
    2. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2020. "Robust nonparametric estimation of the conditional tail dependence coefficient," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    3. Mikael Escobar-Bach & Yuri Goegebeur & Armelle Guillou & Alexandre You, 2017. "Bias-corrected and robust estimation of the bivariate stable tail dependence function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 284-307, June.
    4. Goedele Dierckx & Yuri Goegebeur & Armelle Guillou, 2021. "Local Robust Estimation of Pareto-Type Tails with Random Right Censoring," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 70-108, February.
    5. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
    6. de Valk, Cees, 2016. "A large deviations approach to the statistics of extreme events," Other publications TiSEM 117b3ba0-0e40-4277-b25e-d, Tilburg University, School of Economics and Management.
    7. Beirlant, Jan & Escobar-Bach, Mikael & Goegebeur, Yuri & Guillou, Armelle, 2016. "Bias-corrected estimation of stable tail dependence function," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 453-466.
    8. Y Hoga, 2018. "A structural break test for extremal dependence in β-mixing random vectors," Biometrika, Biometrika Trust, vol. 105(3), pages 627-643.
    9. Cooley, Daniel & Davis, Richard A. & Naveau, Philippe, 2010. "The pairwise beta distribution: A flexible parametric multivariate model for extremes," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2103-2117, October.
    10. Yuri Goegebeur & Armelle Guillou & Théo Rietsch, 2015. "Robust conditional Weibull-type estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 479-514, June.
    11. Michael Falk & René Michel, 2006. "Testing for Tail Independence in Extreme Value models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 261-290, June.
    12. Goedele Dierckx & Yuri Goegebeur & Armelle Guillou, 2014. "Local robust and asymptotically unbiased estimation of conditional Pareto-type tails," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 330-355, June.
    13. Marta Ferreira, 2024. "Extremal index: estimation and resampling," Computational Statistics, Springer, vol. 39(5), pages 2703-2720, July.
    14. Fung, Thomas & Seneta, Eugene, 2021. "Tail asymptotics for the bivariate equi-skew generalized hyperbolic distribution and its Variance-Gamma special case," Statistics & Probability Letters, Elsevier, vol. 178(C).
    15. Richards, Jordan & Tawn, Jonathan A., 2022. "On the tail behaviour of aggregated random variables," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    16. Asimit, Alexandru V. & Gerrard, Russell, 2016. "On the worst and least possible asymptotic dependence," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 218-234.
    17. Liu, Y. & Tawn, J.A., 2014. "Self-consistent estimation of conditional multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 19-35.
    18. Philipp Hartmann & Stefan Straetmans & Casper de Vries, 2007. "Banking System Stability. A Cross-Atlantic Perspective," NBER Chapters, in: The Risks of Financial Institutions, pages 133-188, National Bureau of Economic Research, Inc.
    19. Guillou, Armelle & Padoan, Simone A. & Rizzelli, Stefano, 2018. "Inference for asymptotically independent samples of extremes," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 114-135.
    20. Lei Hua, 2016. "A Note on Upper Tail Behavior of Liouville Copulas," Risks, MDPI, vol. 4(4), pages 1-10, November.

    More about this item

    Keywords

    failure set; bias-correction; tail dependence; robustness; tail quantile process;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01616187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.