IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2309.15511.html
   My bibliography  Save this paper

Measuring risk contagion in financial networks with CoVaR

Author

Listed:
  • Bikramjit Das
  • Vicky Fasen-Hartmann

Abstract

The stability of a complex financial system may be assessed by measuring risk contagion between various financial institutions with relatively high exposure. We consider a financial network model using a bipartite graph of financial institutions (e.g., banks, investment companies, insurance firms) on one side and financial assets on the other. Following empirical evidence, returns from such risky assets are modeled by heavy-tailed distributions, whereas their joint dependence is characterized by copula models exhibiting a variety of tail dependence behavior. We consider CoVaR, a popular measure of risk contagion and study its asymptotic behavior under broad model assumptions. We further propose the Extreme CoVaR Index (ECI) for capturing the strength of risk contagion between risk entities in such networks, which is particularly useful for models exhibiting asymptotic independence. The results are illustrated by providing precise expressions of CoVaR and ECI when the dependence of the assets is modeled using two well-known multivariate dependence structures: the Gaussian copula and the Marshall-Olkin copula.

Suggested Citation

  • Bikramjit Das & Vicky Fasen-Hartmann, 2023. "Measuring risk contagion in financial networks with CoVaR," Papers 2309.15511, arXiv.org, revised Jun 2024.
  • Handle: RePEc:arx:papers:2309.15511
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2309.15511
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luca Marotta & Salvatore Miccichè & Yoshi Fujiwara & Hiroshi Iyetomi & Hideaki Aoyama & Mauro Gallegati & Rosario N Mantegna, 2015. "Bank-Firm Credit Network in Japan: An Analysis of a Bipartite Network," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.
    2. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2017. "Measuring Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 2-47.
    3. Lehtomaa, Jaakko & Resnick, Sidney I., 2020. "Asymptotic independence and support detection techniques for heavy-tailed multivariate data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 262-277.
    4. Alexandra Ramos & Anthony Ledford, 2009. "A new class of models for bivariate joint tails," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 219-241, January.
    5. Reboredo, Juan C. & Ugolini, Andrea, 2015. "Systemic risk in European sovereign debt markets: A CoVaR-copula approach," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 214-244.
    6. Caccioli, Fabio & Shrestha, Munik & Moore, Cristopher & Farmer, J. Doyne, 2014. "Stability analysis of financial contagion due to overlapping portfolios," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 233-245.
    7. Bikramjit Das & Vicky Fasen-Hartmann, 2023. "On heavy-tailed risks under Gaussian copula: the effects of marginal transformation," Papers 2304.05004, arXiv.org.
    8. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    9. Basrak, Bojan & Davis, Richard A. & Mikosch, Thomas, 2002. "Regular variation of GARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 95-115, May.
    10. Girardi, Giulio & Tolga Ergün, A., 2013. "Systemic risk measurement: Multivariate GARCH estimation of CoVaR," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3169-3180.
    11. Larry Eisenberg & Thomas H. Noe, 2001. "Systemic Risk in Financial Systems," Management Science, INFORMS, vol. 47(2), pages 236-249, February.
    12. Furman, Edward & Kuznetsov, Alexey & Su, Jianxi & Zitikis, Ričardas, 2016. "Tail dependence of the Gaussian copula revisited," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 97-103.
    13. Oliver Kley & Claudia Klüppelberg & Gesine Reinert, 2016. "Risk in a Large Claims Insurance Market with Bipartite Graph Structure," Operations Research, INFORMS, vol. 64(5), pages 1159-1176, October.
    14. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    15. Guillou, Armelle & Padoan, Simone A. & Rizzelli, Stefano, 2018. "Inference for asymptotically independent samples of extremes," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 114-135.
    16. Oliver Kley & Claudia Klüppelberg & Gesine Reinert, 2018. "Conditional risk measures in a bipartite market structure," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2018(4), pages 328-355, April.
    17. Michele Leonardo Bianchi & Giovanni De Luca & Giorgia Rivieccio, 2020. "CoVaR with volatility clustering, heavy tails and non-linear dependence," Papers 2009.10764, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das, Bikramjit & Fasen-Hartmann, Vicky, 2024. "On heavy-tailed risks under Gaussian copula: The effects of marginal transformation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ellis, Scott & Sharma, Satish & Brzeszczyński, Janusz, 2022. "Systemic risk measures and regulatory challenges," Journal of Financial Stability, Elsevier, vol. 61(C).
    2. Shimizu, Katsutoshi & Ly, Kim Cuong, 2017. "Were regulatory interventions effective in lowering systemic risk during the financial crisis in Japan?," Journal of Multinational Financial Management, Elsevier, vol. 41(C), pages 80-91.
    3. Silva, Walmir & Kimura, Herbert & Sobreiro, Vinicius Amorim, 2017. "An analysis of the literature on systemic financial risk: A survey," Journal of Financial Stability, Elsevier, vol. 28(C), pages 91-114.
    4. Wang, Bo & Xiao, Yang, 2023. "Risk spillovers from China's and the US stock markets during high-volatility periods: Evidence from East Asianstock markets," International Review of Financial Analysis, Elsevier, vol. 86(C).
    5. Xu, Qiuhua & Yan, Haoyang & Zhao, Tianyu, 2022. "Contagion effect of systemic risk among industry sectors in China’s stock market," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    6. Martin Waltz & Abhay Kumar Singh & Ostap Okhrin, 2022. "Vulnerability-CoVaR: investigating the crypto-market," Quantitative Finance, Taylor & Francis Journals, vol. 22(9), pages 1731-1745, September.
    7. Hyun Jin Jang & Kiseop Lee & Kyungsub Lee, 2020. "Systemic risk in market microstructure of crude oil and gasoline futures prices: A Hawkes flocking model approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(2), pages 247-275, February.
    8. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    9. Nils Detering & Thilo Meyer-Brandis & Konstantinos Panagiotou & Daniel Ritter, 2020. "Suffocating Fire Sales," Papers 2006.08110, arXiv.org, revised Nov 2021.
    10. Sullivan HUE & Yannick LUCOTTE & Sessi TOKPAVI, 2018. "Measuring Network Systemic Risk Contributions: A Leave-one-out Approach," LEO Working Papers / DR LEO 2608, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    11. Roman Garcia & Dimitri Lorenzani & Daniel Monteiro & Francesco Perticari & Bořek Vašíček & Lukas Vogel, 2021. "Financial Spillover and Contagion Risks in the Euro Area in 2007-2019," European Economy - Discussion Papers 137, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    12. Hué, Sullivan & Lucotte, Yannick & Tokpavi, Sessi, 2019. "Measuring network systemic risk contributions: A leave-one-out approach," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 86-114.
    13. Fenghua Wen & Kaiyan Weng & Wei-Xing Zhou, 2020. "Measuring the contribution of Chinese financial institutions to systemic risk: an extended asymmetric CoVaR approach," Risk Management, Palgrave Macmillan, vol. 22(4), pages 310-337, December.
    14. Shoukun Jiao & Wuyi Ye, 2022. "Dependence and Systemic Risk Analysis Between S&P 500 Index and Sector Indexes: A Conditional Value-at-Risk Approach," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1203-1229, March.
    15. Pichler, Anton & Poledna, Sebastian & Thurner, Stefan, 2021. "Systemic risk-efficient asset allocations: Minimization of systemic risk as a network optimization problem," Journal of Financial Stability, Elsevier, vol. 52(C).
    16. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    17. Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Management Science, INFORMS, vol. 67(9), pages 5730-5754, September.
    18. Reboredo, Juan C. & Ugolini, Andrea, 2015. "A vine-copula conditional value-at-risk approach to systemic sovereign debt risk for the financial sector," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 98-123.
    19. Morelli, David & Vioto, Davide, 2020. "Assessing the contribution of China’s financial sectors to systemic risk," Journal of Financial Stability, Elsevier, vol. 50(C).
    20. Zhang, Weiping & Zhuang, Xintian & Wang, Jian & Lu, Yang, 2020. "Connectedness and systemic risk spillovers analysis of Chinese sectors based on tail risk network," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2309.15511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.