Projection Estimates of Constrained Functional Parameters
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Dragi Anevski, 2003. "Estimating the Derivative of a Convex Density," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(2), pages 245-257, May.
- Einmahl, J.H.J. & de Haan, L.F.M. & Piterbarg, V.I., 2001. "Nonparametric estimation of the spectral measure of an extreme value distribution," Other publications TiSEM c3485b9b-a0bd-456f-9baa-0, Tilburg University, School of Economics and Management.
- Deheuvels, Paul, 1991. "On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions," Statistics & Probability Letters, Elsevier, vol. 12(5), pages 429-439, November.
- Segers, J.J.J., 2004. "Non-Parametric Inference for Bivariate Extreme-Value Copulas," Other publications TiSEM 3e837d24-e733-407c-bfaa-f, Tilburg University, School of Economics and Management.
- Segers, J.J.J., 2004. "Non-Parametric Inference for Bivariate Extreme-Value Copulas," Discussion Paper 2004-91, Tilburg University, Center for Economic Research.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fils-Villetard, A. & Guillou, A. & Segers, J., 2005. "Projection Estimates of Constrained Functional Parameters," Other publications TiSEM fe25c070-c313-4369-a6a5-8, Tilburg University, School of Economics and Management.
- Gudendorf, Gordon & Segers, Johan, 2011. "Nonparametric estimation of multivariate extreme-value copulas," LIDAM Discussion Papers ISBA 2011018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Zhang, Dabao & Wells, Martin T. & Peng, Liang, 2008. "Nonparametric estimation of the dependence function for a multivariate extreme value distribution," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 577-588, April.
- Hu, Shuang & Peng, Zuoxiang & Segers, Johan, 2022. "Modelling multivariate extreme value distributions via Markov trees," LIDAM Discussion Papers ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Cooley, Daniel & Davis, Richard A. & Naveau, Philippe, 2010. "The pairwise beta distribution: A flexible parametric multivariate model for extremes," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2103-2117, October.
- Claudia Klüppelberg & Gabriel Kuhn & Liang Peng, 2008. "Semi‐Parametric Models for the Multivariate Tail Dependence Function – the Asymptotically Dependent Case," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 701-718, December.
- Pavlides, Marios G. & Wellner, Jon A., 2012. "Nonparametric estimation of multivariate scale mixtures of uniform densities," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 71-89.
- Alexandra Ramos & Anthony Ledford, 2009. "A new class of models for bivariate joint tails," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 219-241, January.
- Estate Khmaladze & Wolfgang Weil, 2008. "Local empirical processes near boundaries of convex bodies," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 813-842, December.
- Falk, Michael & Reiss, Rolf-Dieter, 2005. "On Pickands coordinates in arbitrary dimensions," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 426-453, February.
- Bucher, Axel & Segers, Johan, 2013. "Extreme value copula estimation based on block maxima of a multivariate stationary time series," LIDAM Discussion Papers ISBA 2013049, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, John H.J. & de Haan, Laurens & Sinha, Ashoke Kumar, 1997.
"Estimating the spectral measure of an extreme value distribution,"
Stochastic Processes and their Applications, Elsevier, vol. 70(2), pages 143-171, October.
- J Einmahl, .H. & de Haan, L. & Sinha, A., 1997. "Estimating the spectral measure of an extreme value distribution," Other publications TiSEM ac22e123-1e5d-448a-981e-a, Tilburg University, School of Economics and Management.
- Mhalla, Linda & Chavez-Demoulin, Valérie & Naveau, Philippe, 2017. "Non-linear models for extremal dependence," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 49-66.
- Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
- Einmahl, J.H.J. & de Haan, L.F.M. & Li, D., 2004.
"Weighted Approximations of Tail Copula Processes with Application to Testing the Multivariate Extreme Value Condition,"
Discussion Paper
2004-71, Tilburg University, Center for Economic Research.
- Einmahl, J.H.J. & de Haan, L.F.M. & Li, D., 2004. "Weighted Approximations of Tail Copula Processes with Application to Testing the Multivariate Extreme Value Condition," Other publications TiSEM 0b2c1bfa-d609-494a-8929-8, Tilburg University, School of Economics and Management.
- Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2016. "Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials," LIDAM Discussion Papers ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Alireza Ahmadabadi & Burcu Hudaverdi Ucer, 2017. "Bivariate nonparametric estimation of the Pickands dependence function using Bernstein copula with kernel regression approach," Computational Statistics, Springer, vol. 32(4), pages 1515-1532, December.
- Sabourin, Anne & Naveau, Philippe, 2014. "Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 542-567.
- Gardes, Laurent & Girard, Stéphane, 2015. "Nonparametric estimation of the conditional tail copula," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 1-16.
- de Carvalho, Miguel & Oumow, Boris & Segers, Johan & WarchoÅ‚, MichaÅ‚, 2012. "A Euclidean likelihood estimator for bivariate tail dependence," LIDAM Discussion Papers ISBA 2012013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
More about this item
Keywords
estimation; convex function; extreme value copula; Pickands dependence function; projection; shape constraint; support function; tangent cone;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:fe25c070-c313-4369-a6a5-824e84def41e. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: http://center.uvt.nl .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.