IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v70y2008i1p245-264.html
   My bibliography  Save this article

Graphical models for marked point processes based on local independence

Author

Listed:
  • Vanessa Didelez

Abstract

Summary. A new class of graphical models capturing the dependence structure of events that occur in time is proposed. The graphs represent so‐called local independences, meaning that the intensities of certain types of events are independent of some (but not necessarilly all) events in the past. This dynamic concept of independence is asymmetric, similar to Granger non‐causality, so the corresponding local independence graphs differ considerably from classical graphical models. Hence a new notion of graph separation, which is called δ‐separation, is introduced and implications for the underlying model as well as for likelihood inference are explored. Benefits regarding facilitation of reasoning about and understanding of dynamic dependences as well as computational simplifications are discussed.

Suggested Citation

  • Vanessa Didelez, 2008. "Graphical models for marked point processes based on local independence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 245-264, February.
  • Handle: RePEc:bla:jorssb:v:70:y:2008:i:1:p:245-264
    DOI: 10.1111/j.1467-9868.2007.00634.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2007.00634.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2007.00634.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Denis Allard & Anders Brix & Joël Chadoeuf, 2001. "Testing Local Independence between Two Point Processes," Biometrics, The International Biometric Society, vol. 57(2), pages 508-517, June.
    2. Arjas, Elja & Haara, Pentti & Norros, Ikka, 1992. "Filtering the histories of a partially observed marked point process," Stochastic Processes and their Applications, Elsevier, vol. 40(2), pages 225-250, March.
    3. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    4. Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
    5. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    6. Florens, Jean-Pierre & Fougere, Denis, 1996. "Noncausality in Continuous Time," Econometrica, Econometric Society, vol. 64(5), pages 1195-1212, September.
    7. Elja Arjas & Jan Parner, 2004. "Causal Reasoning from Longitudinal Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(2), pages 171-187, June.
    8. Vanessa Didelez, 2007. "Graphical Models for Composable Finite Markov Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(1), pages 169-185, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bachirou O. Taddé & Hélène Jacqmin‐Gadda & Jean‐François Dartigues & Daniel Commenges & Cécile Proust‐Lima, 2020. "Dynamic modeling of multivariate dimensions and their temporal relationships using latent processes: Application to Alzheimer's disease," Biometrics, The International Biometric Society, vol. 76(3), pages 886-899, September.
    2. Mohammad Masoud Rahimi & Elham Naghizade & Mark Stevenson & Stephan Winter, 2023. "SentiHawkes: a sentiment-aware Hawkes point process to model service quality of public transport using Twitter data," Public Transport, Springer, vol. 15(2), pages 343-376, June.
    3. Tata Subba Rao & Granville Tunnicliffe Wilson & Michael Eichler & Rainer Dahlhaus & Johannes Dueck, 2017. "Graphical Modeling for Multivariate Hawkes Processes with Nonparametric Link Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 225-242, March.
    4. Daniel Commenges, 2019. "Dealing with death when studying disease or physiological marker: the stochastic system approach to causality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 381-405, July.
    5. Jan M. Hoem & Lesia Nedoluzhko, 2008. "Marriage formation as a process intermediary between migration and childbearing," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 18(21), pages 611-628.
    6. Emanuele Gramuglia & Geir Storvik & Morten Stakkeland, 2021. "Clustering and automatic labelling within time series of categorical observations—with an application to marine log messages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 714-732, June.
    7. Eichler, M. & Didelez, V., 2009. "On Granger-causality and the effect of interventions in time series," Research Memorandum 003, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    8. Jan M. Hoem & Lesia Nedoluzhko, 2008. "Marriage formation as a process intermediary between migration and childbearing," MPIDR Working Papers WP-2008-015, Max Planck Institute for Demographic Research, Rostock, Germany.
    9. Daniel Commenges & Anne Gégout‐Petit, 2009. "A general dynamical statistical model with causal interpretation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 719-736, June.
    10. Ørnulf Borgan & Håkon K. Gjessing, 2019. "Special issue dedicated to Odd O. Aalen," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 587-592, October.
    11. Oisín Ryan & Ellen L. Hamaker, 2022. "Time to Intervene: A Continuous-Time Approach to Network Analysis and Centrality," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 214-252, March.
    12. Mélanie Prague & Daniel Commenges & Jon Michael Gran & Bruno Ledergerber & Jim Young & Hansjakob Furrer & Rodolphe Thiébaut, 2017. "Dynamic models for estimating the effect of HAART on CD4 in observational studies: Application to the Aquitaine Cohort and the Swiss HIV Cohort Study," Biometrics, The International Biometric Society, vol. 73(1), pages 294-304, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011. "Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.
    2. Jonas Hallgren & Timo Koski, 2016. "Testing for Causality in Continuous Time Bayesian Network Models of High-Frequency Data," Papers 1601.06651, arXiv.org.
    3. Daniel Commenges & Anne Gégout‐Petit, 2009. "A general dynamical statistical model with causal interpretation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 719-736, June.
    4. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    5. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    6. Manabu Asai & Michael McAleer, 2017. "A fractionally integrated Wishart stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
    7. Jia Li & Dacheng Xiu, 2016. "Generalized Method of Integrated Moments for High‐Frequency Data," Econometrica, Econometric Society, vol. 84, pages 1613-1633, July.
    8. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Sojmark, 2017. "Functional central limit theorems for rough volatility," Papers 1711.03078, arXiv.org, revised Nov 2023.
    9. Hurvich, Cliiford & Wang, Yi, 2006. "A Pure-Jump Transaction-Level Price Model Yielding Cointegration, Leverage, and Nonsynchronous Trading Effects," MPRA Paper 1413, University Library of Munich, Germany.
    10. Hideharu Funahashi & Masaaki Kijima, 2017. "Does the Hurst index matter for option prices under fractional volatility?," Annals of Finance, Springer, vol. 13(1), pages 55-74, February.
    11. Yacine Ait--Sahalia & Per A. Mykland, 2003. "The Effects of Random and Discrete Sampling when Estimating Continuous--Time Diffusions," Econometrica, Econometric Society, vol. 71(2), pages 483-549, March.
    12. Chen, Xiaohong & Hansen, Lars Peter & Carrasco, Marine, 2010. "Nonlinearity and temporal dependence," Journal of Econometrics, Elsevier, vol. 155(2), pages 155-169, April.
    13. McCrorie, J. Roderick & Chambers, Marcus J., 2006. "Granger causality and the sampling of economic processes," Journal of Econometrics, Elsevier, vol. 132(2), pages 311-336, June.
    14. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    15. Anne Philippe & Caroline Robet & Marie-Claude Viano, 2021. "Random discretization of stationary continuous time processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 375-400, April.
    16. Kanaya, Shin & Otsu, Taisuke, 2012. "Large deviations of realized volatility," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 546-581.
    17. Li, Jia & Todorov, Viktor & Tauchen, George & Chen, Rui, 2017. "Mixed-scale jump regressions with bootstrap inference," Journal of Econometrics, Elsevier, vol. 201(2), pages 417-432.
    18. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," Papers 1608.01895, arXiv.org, revised Mar 2018.
    19. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    20. Fabienne Comte & Valentine Genon-Catalot, 2021. "Nonparametric estimation for i.i.d. Gaussian continuous time moving average models," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 149-177, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:70:y:2008:i:1:p:245-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.