IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v64y1996i5p1195-1212.html
   My bibliography  Save this article

Noncausality in Continuous Time

Author

Listed:
  • Florens, Jean-Pierre
  • Fougere, Denis

Abstract

Different concepts of noncausality for continuous time processes, using conditional independence and decomposition of semimartingales, are defined. As in the discrete-time setup, continuous time noncausality is a property concerned with the prediction horizon (global versus instantaneous noncausality) and the nature of the prediction (strong versus weak noncausality). Relations between the resulting continuous time noncausality concepts are then studied for the class of decomposable semimartingales for which, in general, the weak instantaneous noncausality does not imply the strong global noncausality. The paper then characterizes these different concepts in the case of counting processes and Markov processes. Copyright 1996 by The Econometric Society.

Suggested Citation

  • Florens, Jean-Pierre & Fougere, Denis, 1996. "Noncausality in Continuous Time," Econometrica, Econometric Society, vol. 64(5), pages 1195-1212, September.
  • Handle: RePEc:ecm:emetrp:v:64:y:1996:i:5:p:1195-1212
    as

    Download full text from publisher

    File URL: http://links.jstor.org/sici?sici=0012-9682%28199609%2964%3A5%3C1195%3ANICT%3E2.0.CO%3B2-F&origin=repec
    File Function: full text
    Download Restriction: Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Renault, Eric & Werker, Bas J.M., 2011. "Causality effects in return volatility measures with random times," Journal of Econometrics, Elsevier, vol. 160(1), pages 272-279, January.
    2. Garcia, R. & Renault, E., 1998. "Risk Aversion, Intertemporal Substitution, and Option Pricing," Cahiers de recherche 9801, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    3. Oliver Linton & Pedro Gozalo, 1996. "Conditional Independence Restrictions: Testing and Estimation," Cowles Foundation Discussion Papers 1140, Cowles Foundation for Research in Economics, Yale University.
    4. Acciaio, B. & Backhoff-Veraguas, J. & Zalashko, A., 2020. "Causal optimal transport and its links to enlargement of filtrations and continuous-time stochastic optimization," LSE Research Online Documents on Economics 101864, London School of Economics and Political Science, LSE Library.
    5. Vanessa Didelez, 2008. "Graphical models for marked point processes based on local independence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 245-264, February.
    6. Jonas Hallgren & Timo Koski, 2016. "Testing for Causality in Continuous Time Bayesian Network Models of High-Frequency Data," Papers 1601.06651, arXiv.org.
    7. Van den Berg, Gerard J., 2001. "Duration models: specification, identification and multiple durations," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 55, pages 3381-3460, Elsevier.
    8. Petrović, Ljiljana & Dimitrijević, Sladjana, 2012. "Causality with finite horizon of the past in continuous time," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1219-1223.
    9. Yacine Ait--Sahalia & Per A. Mykland, 2003. "The Effects of Random and Discrete Sampling when Estimating Continuous--Time Diffusions," Econometrica, Econometric Society, vol. 71(2), pages 483-549, March.
    10. Monica Billio & Silvio Di Sanzo, 2015. "Granger-causality in Markov switching models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 956-966, May.
    11. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011. "Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.
    12. McCrorie, J. Roderick & Chambers, Marcus J., 2006. "Granger causality and the sampling of economic processes," Journal of Econometrics, Elsevier, vol. 132(2), pages 311-336, June.
    13. Acciaio, B. & Backhoff-Veraguas, J. & Zalashko, A., 2020. "Causal optimal transport and its links to enlargement of filtrations and continuous-time stochastic optimization," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 2918-2953.
    14. Tata Subba Rao & Granville Tunnicliffe Wilson & Michael Eichler & Rainer Dahlhaus & Johannes Dueck, 2017. "Graphical Modeling for Multivariate Hawkes Processes with Nonparametric Link Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 225-242, March.
    15. Cheng, Yu-Hsiang & Huang, Tzee-Ming, 2012. "A conditional independence test for dependent data based on maximal conditional correlation," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 210-226.
    16. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.
    17. Cherubini, Umberto & Mulinacci, Sabrina & Romagnoli, Silvia, 2011. "A copula-based model of speculative price dynamics in discrete time," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1047-1063, July.
    18. Valjarević, Dragana & Merkle, Ana, 2021. "Statistical causality and measurable separability of σ-algebras," Statistics & Probability Letters, Elsevier, vol. 177(C).
    19. Eichler, M. & Didelez, V., 2009. "On Granger-causality and the effect of interventions in time series," Research Memorandum 003, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    20. White, Halbert, 2006. "Time-series estimation of the effects of natural experiments," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 527-566.
    21. Florens, Jean-Pierre, 2003. "Some technical issues in defining causality," Journal of Econometrics, Elsevier, vol. 112(1), pages 127-128, January.
    22. Petrovic, Ljiljana & Dimitrijevic, Sladjana, 2011. "Invariance of statistical causality under convergence," Statistics & Probability Letters, Elsevier, vol. 81(9), pages 1445-1448, September.
    23. Daniel Commenges & Anne Gégout‐Petit, 2009. "A general dynamical statistical model with causal interpretation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 719-736, June.
    24. Merkle, Ana, 2023. "Causal predictability and weak solutions of the stochastic differential equations with driving semimartingales," Statistics & Probability Letters, Elsevier, vol. 197(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:64:y:1996:i:5:p:1195-1212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.