IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v87y2022i1d10.1007_s11336-021-09767-0.html
   My bibliography  Save this article

Time to Intervene: A Continuous-Time Approach to Network Analysis and Centrality

Author

Listed:
  • Oisín Ryan

    (Utrecht University)

  • Ellen L. Hamaker

    (Utrecht University)

Abstract

Network analysis of ESM data has become popular in clinical psychology. In this approach, discrete-time (DT) vector auto-regressive (VAR) models define the network structure with centrality measures used to identify intervention targets. However, VAR models suffer from time-interval dependency. Continuous-time (CT) models have been suggested as an alternative but require a conceptual shift, implying that DT-VAR parameters reflect total rather than direct effects. In this paper, we propose and illustrate a CT network approach using CT-VAR models. We define a new network representation and develop centrality measures which inform intervention targeting. This methodology is illustrated with an ESM dataset.

Suggested Citation

  • Oisín Ryan & Ellen L. Hamaker, 2022. "Time to Intervene: A Continuous-Time Approach to Network Analysis and Centrality," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 214-252, March.
  • Handle: RePEc:spr:psycho:v:87:y:2022:i:1:d:10.1007_s11336-021-09767-0
    DOI: 10.1007/s11336-021-09767-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-021-09767-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-021-09767-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Epskamp, Sacha & Cramer, Angélique O.J. & Waldorp, Lourens J. & Schmittmann, Verena D. & Borsboom, Denny, 2012. "qgraph: Network Visualizations of Relationships in Psychometric Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i04).
    2. Maarten Bak & Marjan Drukker & Laila Hasmi & Jim van Os, 2016. "An n=1 Clinical Network Analysis of Symptoms and Treatment in Psychosis," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-15, September.
    3. Vanessa Didelez, 2019. "Defining causal mediation with a longitudinal mediator and a survival outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 593-610, October.
    4. Bergstrom, A.R., 1984. "Continuous time stochastic models and issues of aggregation over time," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 20, pages 1145-1212, Elsevier.
    5. Johan Oud & Robert Jansen, 2000. "Continuous time state space modeling of panel data by means of sem," Psychometrika, Springer;The Psychometric Society, vol. 65(2), pages 199-215, June.
    6. Odd O. Aalen & Kjetil Røysland & Jon Michael Gran & Bruno Ledergerber, 2012. "Causality, mediation and time: a dynamic viewpoint," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(4), pages 831-861, October.
    7. Vanessa Didelez, 2008. "Graphical models for marked point processes based on local independence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 245-264, February.
    8. Driver, Charles C. & Oud, Johan H. L. & Voelkle, Manuel C., 2017. "Continuous Time Structural Equation Modeling with R Package ctsem," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i05).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denny Borsboom, 2022. "Possible Futures for Network Psychometrics," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 253-265, March.
    2. Maarten Marsman & Mijke Rhemtulla, 2022. "Guest Editors’ Introduction to The Special Issue “Network Psychometrics in Action”: Methodological Innovations Inspired by Empirical Problems," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ørnulf Borgan & Håkon K. Gjessing, 2019. "Special issue dedicated to Odd O. Aalen," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 587-592, October.
    2. Siem Jan Koopman & Marius Ooms & André Lucas & Kees van Montfort & Victor Van Der Geest, 2008. "Estimating systematic continuous‐time trends in recidivism using a non‐Gaussian panel data model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 62(1), pages 104-130, February.
    3. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    4. Derek De Beurs, 2017. "Network Analysis: A Novel Approach to Understand Suicidal Behaviour," IJERPH, MDPI, vol. 14(3), pages 1-8, February.
    5. Johan Oud & Manuel Voelkle, 2014. "Do missing values exist? Incomplete data handling in cross-national longitudinal studies by means of continuous time modeling," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3271-3288, November.
    6. Georgia Mangion & Melanie Simmonds-Buckley & Stephen Kellett & Peter Taylor & Amy Degnan & Charlotte Humphrey & Kate Freshwater & Marisa Poggioli & Cristina Fiorani, 2022. "Modelling Identity Disturbance: A Network Analysis of the Personality Structure Questionnaire (PSQ)," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
    7. Xiao Yang & Nilam Ram & Scott D. Gest & David M. Lydon-Staley & David E. Conroy & Aaron L. Pincus & Peter C. M. Molenaar, 2018. "Socioemotional Dynamics of Emotion Regulation and Depressive Symptoms: A Person-Specific Network Approach," Complexity, Hindawi, vol. 2018, pages 1-14, November.
    8. Mamingi Nlandu, 2017. "Beauty and Ugliness of Aggregation over Time: A Survey," Review of Economics, De Gruyter, vol. 68(3), pages 205-227, December.
    9. Nowman, K. Ben & Sorwar, Ghulam, 2005. "Derivative prices from interest rate models: results for Canada, Hong Kong, and United States," International Review of Financial Analysis, Elsevier, vol. 14(4), pages 428-438.
    10. Belloc, Marianna & Federici, Daniela, 2010. "A two-country NATREX model for the euro/dollar," Journal of International Money and Finance, Elsevier, vol. 29(2), pages 315-335, March.
    11. Gordon, Stephen & St-Amour, Pascal, 1997. "Asset Prices with Contingent Preferences," Cahiers de recherche 9712, Université Laval - Département d'économique, revised 08 Jun 1998.
    12. Yanling Li & Zita Oravecz & Shuai Zhou & Yosef Bodovski & Ian J. Barnett & Guangqing Chi & Yuan Zhou & Naomi P. Friedman & Scott I. Vrieze & Sy-Miin Chow, 2022. "Bayesian Forecasting with a Regime-Switching Zero-Inflated Multilevel Poisson Regression Model: An Application to Adolescent Alcohol Use with Spatial Covariates," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 376-402, June.
    13. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    14. Mats J. Stensrud & Jessica G. Young & Torben Martinussen, 2021. "Discussion on “Causal mediation of semicompeting risks” by Yen‐Tsung Huang," Biometrics, The International Biometric Society, vol. 77(4), pages 1160-1164, December.
    15. Tore Selland Kleppe & Jun Yu & Hans J. skaug, 2011. "Simulated Maximum Likelihood Estimation for Latent Diffusion Models," Working Papers 10-2011, Singapore Management University, School of Economics.
    16. Vittadini, Giorgio & Sturaro, Caterina & Folloni, Giuseppe, 2022. "Non-Cognitive Skills and Cognitive Skills to measure school efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    17. Mélanie Prague & Daniel Commenges & Jon Michael Gran & Bruno Ledergerber & Jim Young & Hansjakob Furrer & Rodolphe Thiébaut, 2017. "Dynamic models for estimating the effect of HAART on CD4 in observational studies: Application to the Aquitaine Cohort and the Swiss HIV Cohort Study," Biometrics, The International Biometric Society, vol. 73(1), pages 294-304, March.
    18. Michael J. Brusco & Douglas Steinley & Ashley L. Watts, 2022. "Disentangling relationships in symptom networks using matrix permutation methods," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 133-155, March.
    19. Denny Borsboom, 2022. "Possible Futures for Network Psychometrics," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 253-265, March.
    20. Shuxi Zeng & Elizabeth C. Lange & Elizabeth A. Archie & Fernando A. Campos & Susan C. Alberts & Fan Li, 2023. "A Causal Mediation Model for Longitudinal Mediators and Survival Outcomes with an Application to Animal Behavior," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 197-218, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:87:y:2022:i:1:d:10.1007_s11336-021-09767-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.