IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v24y2021i1d10.1007_s11203-020-09228-y.html
   My bibliography  Save this article

Nonparametric estimation for i.i.d. Gaussian continuous time moving average models

Author

Listed:
  • Fabienne Comte

    (Université de Paris, CNRS, MAP5 UMR 8145)

  • Valentine Genon-Catalot

    (Université de Paris, CNRS, MAP5 UMR 8145)

Abstract

We consider a Gaussian continuous time moving average model $$X(t)=\int _0^t a(t-s)dW(s)$$ X ( t ) = ∫ 0 t a ( t - s ) d W ( s ) where W is a standard Brownian motion and a(.) a deterministic function locally square integrable on $${{\mathbb {R}}}^+$$ R + . Given N i.i.d. continuous time observations of $$(X_i(t))_{t\in [0,T]}$$ ( X i ( t ) ) t ∈ [ 0 , T ] on [0, T], for $$i=1, \dots , N$$ i = 1 , ⋯ , N distributed like $$(X(t))_{t\in [0,T]}$$ ( X ( t ) ) t ∈ [ 0 , T ] , we propose nonparametric projection estimators of $$a^2$$ a 2 under different sets of assumptions, which authorize or not fractional models. We study the asymptotics in T, N (depending on the setup) ensuring their consistency, provide their nonparametric rates of convergence on functional regularity spaces. Then, we propose a data-driven method corresponding to each setup, for selecting the dimension of the projection space. The findings are illustrated through a simulation study.

Suggested Citation

  • Fabienne Comte & Valentine Genon-Catalot, 2021. "Nonparametric estimation for i.i.d. Gaussian continuous time moving average models," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 149-177, April.
  • Handle: RePEc:spr:sistpr:v:24:y:2021:i:1:d:10.1007_s11203-020-09228-y
    DOI: 10.1007/s11203-020-09228-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-020-09228-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-020-09228-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Comte, 1996. "Simulation And Estimation Of Long Memory Continuous Time Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(1), pages 19-36, January.
    2. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    3. Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
    4. Peter J. Brockwell & Vincenzo Ferrazzano & Claudia Klüppelberg, 2013. "High-frequency sampling and kernel estimation for continuous-time moving average processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 385-404, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    2. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    3. Manabu Asai & Michael McAleer, 2017. "A fractionally integrated Wishart stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
    4. Jia Li & Dacheng Xiu, 2016. "Generalized Method of Integrated Moments for High‐Frequency Data," Econometrica, Econometric Society, vol. 84, pages 1613-1633, July.
    5. Anne Philippe & Caroline Robet & Marie-Claude Viano, 2021. "Random discretization of stationary continuous time processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 375-400, April.
    6. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    7. Casas, Isabel & Gao, Jiti, 2008. "Econometric estimation in long-range dependent volatility models: Theory and practice," Journal of Econometrics, Elsevier, vol. 147(1), pages 72-83, November.
    8. Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Estimation of Long Memory in Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 785-814, October.
    9. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    10. Susanne M. Schennach, 2018. "Long Memory via Networking," Econometrica, Econometric Society, vol. 86(6), pages 2221-2248, November.
    11. Henghsiu Tsai & K. S. Chan, 2005. "Quasi‐Maximum Likelihood Estimation for a Class of Continuous‐time Long‐memory Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 691-713, September.
    12. Hult, Henrik, 2003. "Approximating some Volterra type stochastic integrals with applications to parameter estimation," Stochastic Processes and their Applications, Elsevier, vol. 105(1), pages 1-32, May.
    13. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
    14. Tim Bollerslev & Jia Li & Zhipeng Liao, 2021. "Fixed‐k inference for volatility," Quantitative Economics, Econometric Society, vol. 12(4), pages 1053-1084, November.
    15. F. N. M. de Sousa Filho & J. N. Silva & M. A. Bertella & E. Brigatti, 2020. "The leverage effect and other stylized facts displayed by Bitcoin returns," Papers 2004.05870, arXiv.org, revised Jan 2021.
    16. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    17. Li, Jia & Phillips, Peter C. B. & Shi, Shuping & Yu, Jun, 2022. "Weak Identification of Long Memory with Implications for Inference," Economics and Statistics Working Papers 8-2022, Singapore Management University, School of Economics.
    18. Ofelia Bonesini & Giorgia Callegaro & Martino Grasselli & Gilles Pag`es, 2023. "From elephant to goldfish (and back): memory in stochastic Volterra processes," Papers 2306.02708, arXiv.org, revised Sep 2023.
    19. Rui Da & Dacheng Xiu, 2021. "When Moving‐Average Models Meet High‐Frequency Data: Uniform Inference on Volatility," Econometrica, Econometric Society, vol. 89(6), pages 2787-2825, November.
    20. Robinson, Peter, 2019. "Spatial long memory," LSE Research Online Documents on Economics 102182, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:24:y:2021:i:1:d:10.1007_s11203-020-09228-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.