Does the Hurst index matter for option prices under fractional volatility?
Author
Abstract
Suggested Citation
DOI: 10.1007/s10436-016-0289-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hideharu Funahashi, 2014. "A chaos expansion approach under hybrid volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1923-1936, November.
- Fabienne Comte & Eric Renault, 1998.
"Long memory in continuous‐time stochastic volatility models,"
Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
- Comte, F. & Renault, E., 1996. "Long Memory in Continuous Time Stochastic Volatility Models," Papers 96.406, Toulouse - GREMAQ.
- David K. Backus & Stanley E. Zin, 1993.
"Long-memory inflation uncertainty: evidence from the term structure of interest rates,"
Proceedings, Federal Reserve Bank of Cleveland, pages 681-708.
- Backus, David K & Zin, Stanley E, 1993. "Long-Memory Inflation Uncertainty: Evidence from the Term Structure of Interest Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 25(3), pages 681-700, August.
- David K. Backus & Stanley E. Zin, 1993. "Long-memory Inflation Uncertainty: Evidence from the Term Structure of Interest Rates," NBER Technical Working Papers 0133, National Bureau of Economic Research, Inc.
- David K. Backus, 1993. "Long-Memory Inflation Uncertainty: Evidence from the Term Structure of Interest Rates," Working Papers 93-04, New York University, Leonard N. Stern School of Business, Department of Economics.
- Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996.
"Fractionally integrated generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
- Tom Doan, "undated". "RATS programs to replicate Baillie, Bollerslev, Mikkelson FIGARCH results," Statistical Software Components RTZ00009, Boston College Department of Economics.
- Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2014. "Volatility is rough," Papers 1410.3394, arXiv.org.
- Rainer Schöbel & Jianwei Zhu, 1999. "Stochastic Volatility With an Ornstein–Uhlenbeck Process: An Extension," Review of Finance, European Finance Association, vol. 3(1), pages 23-46.
- Fred Espen Benth, 2003. "On arbitrage-free pricing of weather derivatives based on fractional Brownian motion," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(4), pages 303-324.
- Tommi Sottinen, 2001. "Fractional Brownian motion, random walks and binary market models," Finance and Stochastics, Springer, vol. 5(3), pages 343-355.
- Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
- Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
- Elisa Alòs & Yan Yang, 2014. "A closed-form option pricing approximation formula for a fractional Heston model," Economics Working Papers 1446, Department of Economics and Business, Universitat Pompeu Fabra.
- Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
- F. Comte & L. Coutin & E. Renault, 2012. "Affine fractional stochastic volatility models," Annals of Finance, Springer, vol. 8(2), pages 337-378, May.
- Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
- Masaaki Fukasawa, 2011. "Asymptotic analysis for stochastic volatility: martingale expansion," Finance and Stochastics, Springer, vol. 15(4), pages 635-654, December.
- Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
- Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xi-Li & Wang, Ying-Luo, 2010. "Pricing currency options in a fractional Brownian motion with jumps," Economic Modelling, Elsevier, vol. 27(5), pages 935-942, September.
- L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
- Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
- Jan Matas & Jan Posp'iv{s}il, 2021. "On simulation of rough Volterra stochastic volatility models," Papers 2108.01999, arXiv.org, revised Aug 2022.
- Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
- Huy N. Chau & Duy Nguyen & Thai Nguyen, 2024. "On short-time behavior of implied volatility in a market model with indexes," Papers 2402.16509, arXiv.org, revised Apr 2024.
- Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2023. "Power law in Sandwiched Volterra Volatility model," Papers 2311.01228, arXiv.org.
- Yicun Li & Yuanyang Teng, 2022. "Estimation of the Hurst Parameter in Spot Volatility," Mathematics, MDPI, vol. 10(10), pages 1-26, May.
- Viktor Bezborodov & Luca Persio & Yuliya Mishura, 2019. "Option Pricing with Fractional Stochastic Volatility and Discontinuous Payoff Function of Polynomial Growth," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 331-366, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hideharu Funahashi, 2017. "Pricing derivatives with fractional volatility," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-28, March.
- Hamza Guennoun & Antoine Jacquier & Patrick Roome & Fangwei Shi, 2014. "Asymptotic behaviour of the fractional Heston model," Papers 1411.7653, arXiv.org, revised Aug 2017.
- Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
- Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
- Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
- Zhigang Tong, 2016. "Option pricing in stochastic volatility models driven by fractional Lévy processes," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 56-75.
- Giulia Di Nunno & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2022. "Option pricing in Sandwiched Volterra Volatility model," Papers 2209.10688, arXiv.org, revised Jul 2024.
- Martin Forde & Hongzhong Zhang, 2016. "Asymptotics for rough stochastic volatility models," Papers 1610.08878, arXiv.org, revised Mar 2021.
- Siow Woon Jeng & Adem Kilicman, 2020. "Series Expansion and Fourth-Order Global Padé Approximation for a Rough Heston Solution," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
- Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
- Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
- Alexandra Chronopoulou & Frederi Viens, 2012. "Estimation and pricing under long-memory stochastic volatility," Annals of Finance, Springer, vol. 8(2), pages 379-403, May.
- Elisa Alòs & Yan Yang, 2014. "A closed-form option pricing approximation formula for a fractional Heston model," Economics Working Papers 1446, Department of Economics and Business, Universitat Pompeu Fabra.
- Elisa Alòs & Jorge A. León, 2021. "An Intuitive Introduction to Fractional and Rough Volatilities," Mathematics, MDPI, vol. 9(9), pages 1-22, April.
- Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023.
"A GMM approach to estimate the roughness of stochastic volatility,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
- Anine E. Bolko & Kim Christensen & Mikko S. Pakkanen & Bezirgen Veliyev, 2020. "A GMM approach to estimate the roughness of stochastic volatility," Papers 2010.04610, arXiv.org, revised Apr 2022.
- Viktor Bezborodov & Luca Persio & Yuliya Mishura, 2019. "Option Pricing with Fractional Stochastic Volatility and Discontinuous Payoff Function of Polynomial Growth," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 331-366, March.
- Jan Matas & Jan Posp'iv{s}il, 2021. "Robustness and sensitivity analyses for rough Volterra stochastic volatility models," Papers 2107.12462, arXiv.org, revised Jun 2023.
- Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
- Jan Matas & Jan Pospíšil, 2023. "Robustness and sensitivity analyses of rough Volterra stochastic volatility models," Annals of Finance, Springer, vol. 19(4), pages 523-543, December.
- Yicun Li & Yuanyang Teng, 2022. "Estimation of the Hurst Parameter in Spot Volatility," Mathematics, MDPI, vol. 10(10), pages 1-26, May.
More about this item
Keywords
Fractional Brownian motion; Hurst index; Stochastic volatility; Mean-reverting process; Implied volatility;All these keywords.
JEL classification:
- G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
- G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:annfin:v:13:y:2017:i:1:d:10.1007_s10436-016-0289-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.