IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v73y2017i1p294-304.html
   My bibliography  Save this article

Dynamic models for estimating the effect of HAART on CD4 in observational studies: Application to the Aquitaine Cohort and the Swiss HIV Cohort Study

Author

Listed:
  • Mélanie Prague
  • Daniel Commenges
  • Jon Michael Gran
  • Bruno Ledergerber
  • Jim Young
  • Hansjakob Furrer
  • Rodolphe Thiébaut

Abstract

No abstract is available for this item.

Suggested Citation

  • Mélanie Prague & Daniel Commenges & Jon Michael Gran & Bruno Ledergerber & Jim Young & Hansjakob Furrer & Rodolphe Thiébaut, 2017. "Dynamic models for estimating the effect of HAART on CD4 in observational studies: Application to the Aquitaine Cohort and the Swiss HIV Cohort Study," Biometrics, The International Biometric Society, vol. 73(1), pages 294-304, March.
  • Handle: RePEc:bla:biomet:v:73:y:2017:i:1:p:294-304
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12564
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Diggle & Daniel Farewell & Robin Henderson, 2007. "Analysis of longitudinal data with drop‐out: objectives, assumptions and a proposal," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(5), pages 499-550, November.
    2. Hyejin Ko & Joseph W. Hogan & Kenneth H. Mayer, 2003. "Estimating Causal Treatment Effects from Longitudinal HIV Natural History Studies Using Marginal Structural Models," Biometrics, The International Biometric Society, vol. 59(1), pages 152-162, March.
    3. Marc Lavielle & Adeline Samson & Ana Karina Fermin & France Mentré, 2011. "Maximum Likelihood Estimation of Long-Term HIV Dynamic Models and Antiviral Response," Biometrics, The International Biometric Society, vol. 67(1), pages 250-259, March.
    4. Mélanie Prague & Daniel Commenges & Julia Drylewicz & Rodolphe Thiébaut, 2012. "Treatment Monitoring of HIV-Infected Patients based on Mechanistic Models," Biometrics, The International Biometric Society, vol. 68(3), pages 902-911, September.
    5. Olli Saarela & David A. Stephens & Erica E. M. Moodie & Marina B. Klein, 2015. "Rejoinder “On Bayesian estimation of marginal structural models”," Biometrics, The International Biometric Society, vol. 71(2), pages 299-301, June.
    6. Yongling Xiao & Michal Abrahamowicz & Erica E. M. Moodie & Rainer Weber & James Young, 2014. "Flexible Marginal Structural Models for Estimating the Cumulative Effect of a Time-Dependent Treatment on the Hazard: Reassessing the Cardiovascular Risks of Didanosine Treatment in the Swiss HIV Coho," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 455-464, June.
    7. Olli Saarela & David A. Stephens & Erica E. M. Moodie & Marina B. Klein, 2015. "On Bayesian estimation of marginal structural models," Biometrics, The International Biometric Society, vol. 71(2), pages 279-288, June.
    8. Vanessa Didelez, 2008. "Graphical models for marked point processes based on local independence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 245-264, February.
    9. Orellana Liliana & Rotnitzky Andrea & Robins James M., 2010. "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part II: Proofs of Results," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-19, March.
    10. Orellana Liliana & Rotnitzky Andrea & Robins James M., 2010. "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-49, March.
    11. Elja Arjas & Jan Parner, 2004. "Causal Reasoning from Longitudinal Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(2), pages 171-187, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Commenges, 2019. "Dealing with death when studying disease or physiological marker: the stochastic system approach to causality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 381-405, July.
    2. Bachirou O. Taddé & Hélène Jacqmin‐Gadda & Jean‐François Dartigues & Daniel Commenges & Cécile Proust‐Lima, 2020. "Dynamic modeling of multivariate dimensions and their temporal relationships using latent processes: Application to Alzheimer's disease," Biometrics, The International Biometric Society, vol. 76(3), pages 886-899, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Commenges, 2019. "Dealing with death when studying disease or physiological marker: the stochastic system approach to causality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 381-405, July.
    2. Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
    3. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    4. Ying Huang & Youyi Fong, 2014. "Identifying optimal biomarker combinations for treatment selection via a robust kernel method," Biometrics, The International Biometric Society, vol. 70(4), pages 891-901, December.
    5. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    6. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    7. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    8. Eric B. Laber & Anastasios A. Tsiatis & Marie Davidian & Shannon T. Holloway, 2014. "Discussion of “Combining biomarkers to optimize patient treatment recommendation”," Biometrics, The International Biometric Society, vol. 70(3), pages 707-710, September.
    9. A. Giffin & B. J. Reich & S. Yang & A. G. Rappold, 2023. "Generalized propensity score approach to causal inference with spatial interference," Biometrics, The International Biometric Society, vol. 79(3), pages 2220-2231, September.
    10. Yunan Wu & Lan Wang, 2021. "Resampling‐based confidence intervals for model‐free robust inference on optimal treatment regimes," Biometrics, The International Biometric Society, vol. 77(2), pages 465-476, June.
    11. Shu Yang & Anastasios A. Tsiatis & Michael Blazing, 2018. "Modeling survival distribution as a function of time to treatment discontinuation: A dynamic treatment regime approach," Biometrics, The International Biometric Society, vol. 74(3), pages 900-909, September.
    12. Eric B. Laber & Daniel J. Lizotte & Bradley Ferguson, 2014. "Set-valued dynamic treatment regimes for competing outcomes," Biometrics, The International Biometric Society, vol. 70(1), pages 53-61, March.
    13. Victor Chernozhukov & Whitney Newey & Rahul Singh & Vasilis Syrgkanis, 2022. "Automatic Debiased Machine Learning for Dynamic Treatment Effects and General Nested Functionals," Papers 2203.13887, arXiv.org, revised Jun 2023.
    14. Xiaofei Bai & Anastasios A. Tsiatis & Wenbin Lu & Rui Song, 2017. "Optimal treatment regimes for survival endpoints using a locally-efficient doubly-robust estimator from a classification perspective," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 585-604, October.
    15. Emily L. Butler & Eric B. Laber & Sonia M. Davis & Michael R. Kosorok, 2018. "Incorporating Patient Preferences into Estimation of Optimal Individualized Treatment Rules," Biometrics, The International Biometric Society, vol. 74(1), pages 18-26, March.
    16. Daniel Daly‐Grafstein & Paul Gustafson, 2023. "Combining parametric and nonparametric models to estimate treatment effects in observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 1986-1995, September.
    17. Isaac Meza & Rahul Singh, 2021. "Nested Nonparametric Instrumental Variable Regression: Long Term, Mediated, and Time Varying Treatment Effects," Papers 2112.14249, arXiv.org, revised Mar 2024.
    18. Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
    19. Cain Lauren E. & Robins James M. & Lanoy Emilie & Logan Roger & Costagliola Dominique & Hernán Miguel A., 2010. "When to Start Treatment? A Systematic Approach to the Comparison of Dynamic Regimes Using Observational Data," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-26, April.
    20. Lucia Babino & Andrea Rotnitzky & James Robins, 2019. "Multiple robust estimation of marginal structural mean models for unconstrained outcomes," Biometrics, The International Biometric Society, vol. 75(1), pages 90-99, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:73:y:2017:i:1:p:294-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.