IDEAS home Printed from https://ideas.repec.org/a/bla/jageco/v71y2020i3p853-876.html
   My bibliography  Save this article

The Effect of Investment, LFA and Agri‐environmental Subsidies on the Components of Total Factor Productivity: The Case of Slovenian Farms

Author

Listed:
  • Lajos Baráth
  • Imre Fertő
  • Štefan Bojnec

Abstract

The effect of subsidies on the performance of farms has received a great deal of attention in the literature, although results are inconclusive. Furthermore, much of the related literature examines the effect of subsidies only on technical efficiency (TE). We examine the effect of different types of subsidies on the different components of total factor productivity (TFP) in Slovenian agriculture over the period 2006–2013. We first estimate a Random Parameter Stochastic production frontier model. Then, based on the estimates of this model, we calculate and decompose the TFP index into TE, scale efficiency and technological change. Third, we apply combined difference‐in‐difference and a matching estimator to examine the effect of investment, less favoured area (LFA) and agri‐environmental (AE) subsidies on the different components of TFP. In our case, these subsidies are found to have no significant effect on either TFP or on its components.

Suggested Citation

  • Lajos Baráth & Imre Fertő & Štefan Bojnec, 2020. "The Effect of Investment, LFA and Agri‐environmental Subsidies on the Components of Total Factor Productivity: The Case of Slovenian Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(3), pages 853-876, September.
  • Handle: RePEc:bla:jageco:v:71:y:2020:i:3:p:853-876
    DOI: 10.1111/1477-9552.12374
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1477-9552.12374
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1477-9552.12374?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    2. Laure Latruffe & Yann Desjeux, 2016. "Common Agricultural Policy support, technical efficiencyand productivity change in French agriculture," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 97(1), pages 15-28.
    3. Andrea Pufahl & Christoph R. Weiss, 2009. "Evaluating the effects of farm programmes: results from propensity score matching," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 36(1), pages 79-101, March.
    4. Alvarez, Antonio & del Corral, Julio & Tauer, Loren W., 2012. "Modeling Unobserved Heterogeneity in New York Dairy Farms: One-Stage versus Two-Stage Models," Agricultural and Resource Economics Review, Cambridge University Press, vol. 41(3), pages 275-285, December.
    5. Jerzy Michalek, 2012. "Counterfactual impact evaluation of EU rural development programmes - Propensity Score Matching methodology applied to selected EU Member States. Volume 2: A regional approach," JRC Research Reports JRC72060, Joint Research Centre.
    6. Hugo Bodory & Lorenzo Camponovo & Martin Huber & Michael Lechner, 2020. "The Finite Sample Performance of Inference Methods for Propensity Score Matching and Weighting Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 183-200, January.
    7. Efthymios G. Tsionas, 2002. "Stochastic frontier models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 127-147.
    8. Marian Rizov & Jan Pokrivcak & Pavel Ciaian, 2013. "CAP Subsidies and Productivity of the EU Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(3), pages 537-557, September.
    9. Belyaeva, Maria & Hockmann, Heinrich, 2015. "Impact of regional diversity on production potential: an example of Russia," Studies in Agricultural Economics, Research Institute for Agricultural Economics, vol. 117(2), pages 1-8, August.
    10. Bokusheva, Raushan & Kumbhakar, Subal C. & Lehmann, Bernard, 2012. "The effect of environmental regulations on Swiss farm productivity," International Journal of Production Economics, Elsevier, vol. 136(1), pages 93-101.
    11. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    12. Huber, Martin & Camponovo, Lorenzo & Bodory, Hugo & Lechner, Michael, 2016. "A wild bootstrap algorithm for propensity score matching estimators," FSES Working Papers 470, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    13. Lukas Cechura & Aaron Grau & Heinrich Hockmann & Inna Levkovych & Zdenka Kroupova, 2017. "Catching Up or Falling Behind in European Agriculture: The Case of Milk Production," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(1), pages 206-227, February.
    14. Riccardo D’Alberto & Matteo Zavalloni & Meri Raggi & Davide Viaggi, 2018. "AES Impact Evaluation With Integrated Farm Data: Combining Statistical Matching and Propensity Score Matching," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    15. Ratinger, T. & Medonos, Tomas & Hruška, M., 2013. "An Assessment of the Differentiated Effects of the Investment Support to Agricultural Modernisation: the Case of the Czech Republic," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 5(4), pages 1-12, December.
    16. Laure Latruffe & Boris E. Bravo-Ureta & Alain Carpentier & Yann Desjeux & Víctor H. Moreira, 2017. "Subsidies and Technical Efficiency in Agriculture: Evidence from European Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 783-799.
    17. Xueqin Zhu & Alfons Oude Lansink, 2010. "Impact of CAP Subsidies on Technical Efficiency of Crop Farms in Germany, the Netherlands and Sweden," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(3), pages 545-564, September.
    18. Unay-Gailhard, İlkay & Bojnec, Štefan, 2020. "Public support effect on natural disaster management: A case study of ice storms in forests in Slovenia," Land Use Policy, Elsevier, vol. 95(C).
    19. Eric Njuki & Boris E. Bravo-Ureta & Christopher J. O’Donnell, 2019. "Decomposing agricultural productivity growth using a random-parameters stochastic production frontier," Empirical Economics, Springer, vol. 57(3), pages 839-860, September.
    20. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    21. Laure Latruffe & Hervé Guyomard & Chantal Le Mouël, 2009. "The role of public subsidies on farms’ managerial efficiency: An application of a five-stage approach to France," Working Papers SMART 09-05, INRAE UMR SMART.
    22. Alberto Abadie & Guido W. Imbens, 2008. "On the Failure of the Bootstrap for Matching Estimators," Econometrica, Econometric Society, vol. 76(6), pages 1537-1557, November.
    23. Xiaobing Wang & Heinrich Hockmann & Junfei Bai, 2012. "Technical Efficiency and Producers’ Individual Technology: Accounting for Within and Between Regional Farm Heterogeneity," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 60(4), pages 561-576, December.
    24. Markus Eberhardt & Francis Teal, 2013. "No Mangoes in the Tundra: Spatial Heterogeneity in Agricultural Productivity Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(6), pages 914-939, December.
    25. Lajos Baráth & Imre Fertő & Štefan Bojnec, 2018. "Are farms in less favored areas less efficient?," Agricultural Economics, International Association of Agricultural Economists, vol. 49(1), pages 3-12, January.
    26. Samuelson, Paul A & Swamy, S, 1974. "Invariant Economic Index Numbers and Canonical Duality: Survey and Synthesis," American Economic Review, American Economic Association, vol. 64(4), pages 566-593, September.
    27. Eberhardt, Markus & Vollrath, Dietrich, 2018. "The Effect of Agricultural Technology on the Speed of Development," World Development, Elsevier, vol. 109(C), pages 483-496.
    28. Markus Eberhardt & Francis Teal, 2011. "Econometrics For Grumblers: A New Look At The Literature On Cross‐Country Growth Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 109-155, February.
    29. Boris Bravo-Ureta & William Greene & Daniel Solís, 2012. "Technical efficiency analysis correcting for biases from observed and unobserved variables: an application to a natural resource management project," Empirical Economics, Springer, vol. 43(1), pages 55-72, August.
    30. Julien, Jacques C. & Bravo-Ureta, Boris E. & Rada, Nicholas E., 2019. "Assessing farm performance by size in Malawi, Tanzania, and Uganda," Food Policy, Elsevier, vol. 84(C), pages 153-164.
    31. Shahidur R. Khandker & Gayatri B. Koolwal & Hussain A. Samad, . "Handbook on Impact Evaluation : Quantitative Methods and Practices," World Bank Publications, The World Bank, number 2693, September.
    32. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    33. Sébastien Mary, 2013. "Assessing the Impacts of Pillar 1 and 2 Subsidies on TFP in French Crop Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(1), pages 133-144, February.
    34. Jean Joseph Minviel & Laure Latruffe, 2017. "Effect of public subsidies on farm technical efficiency: a meta-analysis of empirical results," Applied Economics, Taylor & Francis Journals, vol. 49(2), pages 213-226, January.
    35. Bill Greene with Antonio Alvarez (Univ. of Oviedo) & Carlos Arias (Univ. of Leon), 2004. "Accounting For Unobservables In Production Models: Management And Inefficiency," Econometric Society 2004 Australasian Meetings 341, Econometric Society.
    36. Sickles,Robin C. & Zelenyuk,Valentin, 2019. "Measurement of Productivity and Efficiency," Cambridge Books, Cambridge University Press, number 9781107036161, September.
    37. Diewert, W. E., 1976. "Exact and superlative index numbers," Journal of Econometrics, Elsevier, vol. 4(2), pages 115-145, May.
    38. Baráth, Lajos & Fertő, Imre & Hockmann, Heinrich, 2020. "Technological differences, theoretical consistency, and technical efficiency: The case of Hungarian crop-producing farms," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(3), pages 1-17.
    39. Michee Arnold Lachaud & Boris E. Bravo-Ureta & Carlos E. Ludena, 2017. "Agricultural productivity in Latin America and the Caribbean in the presence of unobserved heterogeneity and climatic effects," Climatic Change, Springer, vol. 143(3), pages 445-460, August.
    40. Antonio Alvarez & Julio del Corral, 2010. "Identifying different technologies using a latent class model: extensive versus intensive dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(2), pages 231-250, June.
    41. Štefan Bojnec & Imre Fertő, 2013. "Farm income sources, farm size and farm technical efficiency in Slovenia," Post-Communist Economies, Taylor & Francis Journals, vol. 25(3), pages 343-356, September.
    42. repec:zwi:journl:v:43:y:2012:i:1:p:55-72 is not listed on IDEAS
    43. Laure Latruffe & Boris E. Bravo-Ureta & Alain Carpentier & Yann Desjeux & Víctor H. Moreira, 2017. "Subsidies and Technical Efficiency in Agriculture: Evidence from European Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 783-799.
    44. Johannes Sauer & Catherine J. Morrison Paul, 2013. "The empirical identification of heterogeneous technologies and technical change," Applied Economics, Taylor & Francis Journals, vol. 45(11), pages 1461-1479, April.
    45. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    46. Zhu, Xueqin & Milán Demeter, Róbert, 2012. "Technical efficiency and productivity differentials of dairy farms in three EU countries: the role of CAP subsidies," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 13(1), pages 1-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicola GALLUZZO, 2022. "Agritourism And Less Favored Areas Subsidies Impact On Technical Efficiency Of Italian Farms," Agricultural Economics and Rural Development, Institute of Agricultural Economics, vol. 19(1), pages 61-75.
    2. Mariarosaria Agostino & Ercan Enzo Comert & Federica Demaria & Sabrina Ruberto, 2024. "What kinds of subsidies affect technical efficiency? The case of Italian dairy farms," Agribusiness, John Wiley & Sons, Ltd., vol. 40(1), pages 116-138, January.
    3. Nicola Galluzzo, 2021. "Estimation of the impact of CAP subsidies as environmental variables on Romanian farms," Economia agro-alimentare, FrancoAngeli Editore, vol. 23(3), pages 1-24.
    4. Bojnec, Štefan & Fertő, Imre, 2022. "Do different types of Common Agricultural Policy subsidies promote farm employment?," Land Use Policy, Elsevier, vol. 112(C).
    5. Oliynyk, Oleksandr & Makohon, Vitaliy & Mishchenko, Vitaliya & Brik, Svitlana, 2020. "Ефективність Витрат На Впровадження Нових Сортів І Гібридів У Рослинництві," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 6(4), December.
    6. Frýd, Lukáš & Sokol, Ondřej, 2021. "Relationships between technical efficiency and subsidies for Czech farms: A two-stage robust approach," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    7. Xufeng Cui & Ting Cai & Wei Deng & Rui Zheng & Yuehua Jiang & Hongjie Bao, 2022. "Indicators for Evaluating High-Quality Agricultural Development: Empirical Study from Yangtze River Economic Belt, China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 164(3), pages 1101-1127, December.
    8. Czubak, Wawrzyniec & Pawłowski, Krzysztof Piotr & Sadowski, Arkadiusz, 2021. "Outcomes of farm investment in Central and Eastern Europe: The role of financial public support and investment scale," Land Use Policy, Elsevier, vol. 108(C).
    9. Justas Streimikis & Zhuang Miao & Tomas Balezentis, 2021. "Creation of climate‐smart and energy‐efficient agriculture in the European Union: Pathways based on the frontier analysis," Business Strategy and the Environment, Wiley Blackwell, vol. 30(1), pages 576-589, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lajos Baráth & Imre Fertő & Heinrich Hockmann, 2020. "Technological Differences, Theoretical Consistency, and Technical Efficiency: The Case of Hungarian Crop-Producing Farms," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    2. Lajos Baráth & Imre Fertő & Štefan Bojnec, 2018. "Are farms in less favored areas less efficient?," Agricultural Economics, International Association of Agricultural Economists, vol. 49(1), pages 3-12, January.
    3. Frýd, Lukáš & Sokol, Ondřej, 2021. "Relationships between technical efficiency and subsidies for Czech farms: A two-stage robust approach," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    4. K Hervé Dakpo & Laure Latruffe & Yann Desjeux & Philippe Jeanneaux, 2021. "Latent Class Modelling for a Robust Assessment of Productivity: Application to French Grazing Livestock Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(3), pages 760-781, September.
    5. Mariarosaria Agostino & Ercan Enzo Comert & Federica Demaria & Sabrina Ruberto, 2024. "What kinds of subsidies affect technical efficiency? The case of Italian dairy farms," Agribusiness, John Wiley & Sons, Ltd., vol. 40(1), pages 116-138, January.
    6. Galluzzo Nicola, 2020. "A Technical Efficiency Analysis of Financial Subsidies Allocated by the Cap in Romanian Farms Using Stochastic Frontier Analysis," European Countryside, Sciendo, vol. 12(4), pages 494-505, December.
    7. K Hervé Dakpo & Laure Latruffe & Yann Desjeux & Philippe Jeanneaux, 2022. "Modeling heterogeneous technologies in the presence of sample selection: The case of dairy farms and the adoption of agri‐environmental schemes in France," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 422-438, May.
    8. Khafagy, Amr & Vigani, Mauro, 2022. "Technical change and the Common Agricultural Policy," Food Policy, Elsevier, vol. 109(C).
    9. Lukas Cechura & Aaron Grau & Heinrich Hockmann & Inna Levkovych & Zdenka Kroupova, 2017. "Catching Up or Falling Behind in European Agriculture: The Case of Milk Production," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(1), pages 206-227, February.
    10. Nicola Galluzzo, 2021. "Estimation of the impact of CAP subsidies as environmental variables on Romanian farms," Economia agro-alimentare, FrancoAngeli Editore, vol. 23(3), pages 1-24.
    11. Lajos Barath & Heinrich Hockmann, 2016. "Technological differences, theoretically consistent frontiers and technical efficiency: a Random parameter application in the Hungarian crop producing farms," IEHAS Discussion Papers 1636, Institute of Economics, Centre for Economic and Regional Studies.
    12. Julien, Jacques C. & Bravo-Ureta, Boris E. & Rada, Nicholas E., 2023. "Gender and agricultural Productivity: Econometric evidence from Malawi, Tanzania, and Uganda," World Development, Elsevier, vol. 171(C).
    13. Jerzy Marzec & Andrzej Pisulewski, 2021. "Measurement of technical efficiency in the case of heterogeneity of technologies used between firms - Based on evidence from Polish crop farms," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 67(4), pages 152-161.
    14. Fertő, Imre & Baráth, Lajos, 2013. "Heterogenitás és technikai hatékonyság - a magyar specializált szántóföldi növénytermesztő üzemek esete [Heterogeneity and technical efficiency - the case of Hungarys specialized arable crop produc," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 650-669.
    15. Abdullah Mamun, 2024. "Impact of farm subsidies on global agricultural productivity," Agricultural Economics, International Association of Agricultural Economists, vol. 55(2), pages 346-364, March.
    16. Jean Joseph Minviel & Timo Sipiläinen, 2018. "Dynamic stochastic analysis of the farm subsidy-efficiency link: evidence from France," Journal of Productivity Analysis, Springer, vol. 50(1), pages 41-54, October.
    17. Pia Nilsson & Sofia Wixe, 2022. "Assessing long-term effects of CAP investment support on indicators of farm performance," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(4), pages 760-795.
    18. Ondřej Dvouletý & Ivana Blažková, 2019. "The Impact of Public Grants on Firm-Level Productivity: Findings from the Czech Food Industry," Sustainability, MDPI, vol. 11(2), pages 1-24, January.
    19. Michalek, Jerzy, 2022. "Environmental and farm impacts of the EU RDP agri-environmental measures: Evidence from Slovak regions," Land Use Policy, Elsevier, vol. 113(C).
    20. Cechura, Lukas & Zakova Kroupova, Zdenka & Maly, Michal & Hockmann, Heinrich, 2015. "Scale efficiency in European pork production," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 18(2), pages 51-56.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jageco:v:71:y:2020:i:3:p:853-876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0021-857X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.