IDEAS home Printed from https://ideas.repec.org/p/hrv/faseco/3043415.html
   My bibliography  Save this paper

On the Failure of the Bootstrap for Matching Estimators

Author

Listed:
  • Imbens, Guido
  • Abadie, Alberto

Abstract

Matching estimators are widely used in empirical economics for the evaluation of programs or treatments. Researchers using matching methods often apply the bootstrap to calculate the standard errors. However, no formal justification has been provided for the use of the bootstrap in this setting. In this article, we show that the standard bootstrap is, in general, not valid for matching estimators, even in the simple case with a single continuous covariate where the estimator is root-N consistent and asymptotically normally distributed with zero asymptotic bias. Valid inferential methods in this setting are the analytic asymptotic variance estimator of Abadie and Imbens (2006a) as well as certain modifications of the standard bootstrap, like the subsampling methods in Politis and Romano (1994).

Suggested Citation

  • Imbens, Guido & Abadie, Alberto, 2008. "On the Failure of the Bootstrap for Matching Estimators," Scholarly Articles 3043415, Harvard University Department of Economics.
  • Handle: RePEc:hrv:faseco:3043415
    as

    Download full text from publisher

    File URL: http://dash.harvard.edu/bitstream/handle/1/3043415/imbens_bootstrap.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Myers & Robert B. Olsen & Neil Seftor & Julie Young & Christina Clark Tuttle, "undated". "The Impacts of Regular Upward Bound: Results from the Third Follow-Up Data Collection," Mathematica Policy Research Reports 145dc84be33e47e494cb5569f, Mathematica Policy Research.
    2. Michael Lechner, 2002. "Some practical issues in the evaluation of heterogeneous labour market programmes by matching methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 165(1), pages 59-82, February.
    3. repec:mpr:mprres:4029 is not listed on IDEAS
    4. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    5. Jalan, Jyotsna & Ravallion, Martin, 1999. "Income gains to the poor from workfare - estimates for Argentina's TRABAJAR Program," Policy Research Working Paper Series 2149, The World Bank.
    6. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    7. Emanuela Galasso & Martin Ravallion, 2004. "Social Protection in a Crisis: Argentina's Plan Jefes y Jefas," The World Bank Economic Review, World Bank, vol. 18(3), pages 367-399.
    8. Patrick A. Puhani, 2002. "Advantage through Training in Poland? A Microeconometric Evaluation of the Employment Effects of Training and Job Subsidy Programmes," LABOUR, CEIS, vol. 16(3), pages 569-608, September.
    9. Kosuke Imai, 2005. "Do get-out-the-vote calls reduce turnout? The importance of statistical methods for field experiments," Natural Field Experiments 00272, The Field Experiments Website.
    10. Menno Pradhan & Laura B. Rawlings, 2002. "The Impact and Targeting of Social Infrastructure Investments: Lessons from the Nicaraguan Social Fund," The World Bank Economic Review, World Bank, vol. 16(2), pages 275-295, August.
    11. Rajeev H. Dehejia & Sadek Wahba, 1998. "Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs," NBER Working Papers 6586, National Bureau of Economic Research, Inc.
    12. Alberto Abadie & David Drukker & Jane Leber Herr & Guido W. Imbens, 2004. "Implementing matching estimators for average treatment effects in Stata," Stata Journal, StataCorp LP, vol. 4(3), pages 290-311, September.
    13. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    14. Imai, Kosuke, 2005. "Do Get-Out-the-Vote Calls Reduce Turnout? The Importance of Statistical Methods for Field Experiments," American Political Science Review, Cambridge University Press, vol. 99(2), pages 283-300, May.
    15. Barbara Sianesi, 2004. "An Evaluation of the Swedish System of Active Labor Market Programs in the 1990s," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 133-155, February.
    16. Roberto Agodini & Mark Dynarski, "undated". "Are Experiments the Only Option? A Look at Dropout Prevention Programs," Mathematica Policy Research Reports 51241adbf9fa4a26add6d54c5, Mathematica Policy Research.
    17. Roberto Agodini & Mark Dynarski, 2004. "Are Experiments the Only Option? A Look at Dropout Prevention Programs," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 180-194, February.
    18. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    19. Lorenzo Guarcello & Fabrizia Mealli & Furio Rosati, 2010. "Household vulnerability and child labor: the effect of shocks, credit rationing, and insurance," Journal of Population Economics, Springer;European Society for Population Economics, vol. 23(1), pages 169-198, January.
    20. Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    21. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    22. Sascha O. Becker & Andrea Ichino, 2002. "Estimation of average treatment effects based on propensity scores," Stata Journal, StataCorp LP, vol. 2(4), pages 358-377, November.
    23. Alberto Abadie & Guido W. Imbens, 2002. "Simple and Bias-Corrected Matching Estimators for Average Treatment Effects," NBER Technical Working Papers 0283, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    2. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    3. Wendimu, Mengistu Assefa & Henningsen, Arne & Gibbon, Peter, 2016. "Sugarcane Outgrowers in Ethiopia: “Forced” to Remain Poor?," World Development, Elsevier, vol. 83(C), pages 84-97.
    4. Sudhanshu Handa & John A. Maluccio, 2010. "Matching the Gold Standard: Comparing Experimental and Nonexperimental Evaluation Techniques for a Geographically Targeted Program," Economic Development and Cultural Change, University of Chicago Press, vol. 58(3), pages 415-447, April.
    5. Stephen L. Morgan & David J. Harding, 2006. "Matching Estimators of Causal Effects," Sociological Methods & Research, , vol. 35(1), pages 3-60, August.
    6. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    7. Tommaso Nannicini, 2007. "Simulation-based sensitivity analysis for matching estimators," Stata Journal, StataCorp LP, vol. 7(3), pages 334-350, September.
    8. Dettmann, Eva & Becker, Claudia & Schmeißer, Christian, 2010. "Is there a Superior Distance Function for Matching in Small Samples?," IWH Discussion Papers 3/2010, Halle Institute for Economic Research (IWH).
    9. Liane Faltermeier & Awudu Abdulai, 2009. "The impact of water conservation and intensification technologies: empirical evidence for rice farmers in Ghana," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 365-379, May.
    10. Steven Lehrer & Gregory Kordas, 2013. "Matching using semiparametric propensity scores," Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
    11. Ravallion, Martin, 2008. "Evaluating Anti-Poverty Programs," Handbook of Development Economics, in: T. Paul Schultz & John A. Strauss (ed.), Handbook of Development Economics, edition 1, volume 4, chapter 59, pages 3787-3846, Elsevier.
    12. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    13. David McKenzie & John Gibson & Steven Stillman, 2010. "How Important Is Selection? Experimental vs. Non-Experimental Measures of the Income Gains from Migration," Journal of the European Economic Association, MIT Press, vol. 8(4), pages 913-945, June.
    14. McKenzie, David & Gibson, John & Stillman, Steven, 2006. "How important is selection ? Experimental versus non-experimental measures of the income gains from migration," Policy Research Working Paper Series 3906, The World Bank.
    15. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    16. Andrea Ichino & Fabrizia Mealli & Tommaso Nannicini, 2008. "From temporary help jobs to permanent employment: what can we learn from matching estimators and their sensitivity?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(3), pages 305-327.
    17. Peter R. Mueser & Kenneth R. Troske & Alexey Gorislavsky, 2007. "Using State Administrative Data to Measure Program Performance," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 761-783, November.
    18. Miguel Angel Malo & Fernando Muñoz-Bullón, 2006. "Employment promotion measures and the quality of the job match for persons with disabilities," Hacienda Pública Española / Review of Public Economics, IEF, vol. 179(4), pages 79-111, September.
    19. Ferraro, Paul J. & Miranda, Juan José, 2014. "The performance of non-experimental designs in the evaluation of environmental programs: A design-replication study using a large-scale randomized experiment as a benchmark," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 344-365.
    20. David McKenzie & John Gibson & Steven Stillman, 2006. "How Important is Selection? Experimental vs Non-experimental Measures of the Income Gains of Migration," Working Papers 06_02, Motu Economic and Public Policy Research.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hrv:faseco:3043415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Office for Scholarly Communication (email available below). General contact details of provider: https://edirc.repec.org/data/deharus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.