IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v88y2020i3p797-801.html
   My bibliography  Save this article

Response to the Letter to the Editor on ‘On Quantile‐based Asymmetric Family of Distributions: Properties and Inference’

Author

Listed:
  • Irène Gijbels
  • Rezaul Karim
  • Anneleen Verhasselt

Abstract

Rubio (2020) points out an identification problem for the four‐parameter family of two‐piece asymmetric densities introduced by Nassiri & Loris (2013). This implies that statistical inference for that family is problematic. Establishing probabilistic properties for this four‐parameter family however still makes sense. For the three‐parameter family, there is no identification problem. The main contribution in Gijbels et al. (2019a) is to provide asymptotic results for maximum likelihood and method‐of‐moments estimators for all members of the three‐parameter quantile‐based asymmetric family of distributions.

Suggested Citation

  • Irène Gijbels & Rezaul Karim & Anneleen Verhasselt, 2020. "Response to the Letter to the Editor on ‘On Quantile‐based Asymmetric Family of Distributions: Properties and Inference’," International Statistical Review, International Statistical Institute, vol. 88(3), pages 797-801, December.
  • Handle: RePEc:bla:istatr:v:88:y:2020:i:3:p:797-801
    DOI: 10.1111/insr.12424
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12424
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vahid Nassiri & Ignace Loris, 2013. "A generalized quantile regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(5), pages 1090-1105.
    2. Irène Gijbels & Rezaul Karim & Anneleen Verhasselt, 2019. "On Quantile‐based Asymmetric Family of Distributions: Properties and Inference," International Statistical Review, International Statistical Institute, vol. 87(3), pages 471-504, December.
    3. Frank Critchley & M. C. Jones, 2008. "Asymmetry and Gradient Asymmetry Functions: Density‐Based Skewness and Kurtosis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 415-437, September.
    4. Zhu, Dongming & Galbraith, John W., 2010. "A generalized asymmetric Student-t distribution with application to financial econometrics," Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco J. Rubio Alvarez, 2020. "Letter to the Editor: ‘On Quantile‐based Asymmetric Family of Distributions: Properties and Inference’," International Statistical Review, International Statistical Institute, vol. 88(3), pages 793-796, December.
    2. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    3. Rubio, Francisco Javier & Steel, Mark F. J., 2014. "Bayesian modelling of skewness and kurtosis with two-piece scale and shape transformations," MPRA Paper 57102, University Library of Munich, Germany.
    4. Baillien, Jonas & Gijbels, Irène & Verhasselt, Anneleen, 2023. "A new distance based measure of asymmetry," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    5. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.
    6. repec:wrk:wrkemf:27 is not listed on IDEAS
    7. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    8. James Mitchell & Martin Weale, 2023. "Censored density forecasts: Production and evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 714-734, August.
    9. Emmanuel Afuecheta & Idika E. Okorie & Saralees Nadarajah & Geraldine E. Nzeribe, 2024. "Forecasting Value at Risk and Expected Shortfall of Foreign Exchange Rate Volatility of Major African Currencies via GARCH and Dynamic Conditional Correlation Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 271-304, January.
    10. Colletaz, Gilbert & Hurlin, Christophe & Pérignon, Christophe, 2013. "The Risk Map: A new tool for validating risk models," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3843-3854.
    11. Mahdi Teimouri & Saralees Nadarajah, 2022. "Maximum Likelihood Estimation for the Asymmetric Exponential Power Distribution," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 665-692, August.
    12. Francq, Christian & Zakoian, Jean-Michel, 2023. "Local Asymptotic Normality Of General Conditionally Heteroskedastic And Score-Driven Time-Series Models," Econometric Theory, Cambridge University Press, vol. 39(5), pages 1067-1092, October.
    13. Yasutomo Murasawa, 2013. "Measuring Inflation Expectations Using Interval-Coded Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(4), pages 602-623, August.
    14. Blasques, F. & Francq, Christian & Laurent, Sébastien, 2023. "Quasi score-driven models," Journal of Econometrics, Elsevier, vol. 234(1), pages 251-275.
    15. José María Sarabia & Faustino Prieto & Vanesa Jordá & Stefan Sperlich, 2020. "A Note on Combining Machine Learning with Statistical Modeling for Financial Data Analysis," Risks, MDPI, vol. 8(2), pages 1-14, April.
    16. David Ardia & Kris Boudt & Leopoldo Catania, 2016. "Generalized Autoregressive Score Models in R: The GAS Package," Papers 1609.02354, arXiv.org.
    17. Peter Reinhard Hansen & Chen Tong, 2024. "Convolution-t Distributions," Papers 2404.00864, arXiv.org.
    18. Mark F. J. Steel & Francisco J. Rubio, 2015. "Discussion," International Statistical Review, International Statistical Institute, vol. 83(2), pages 218-222, August.
    19. Martin Weale & Paul Labonne, 2022. "Nowcasting in the presence of large measurement errors and revisions," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-05, Economic Statistics Centre of Excellence (ESCoE).
    20. Dongming Zhu & John W. Galbraith, 2009. "Forecasting Expected Shortfall with a Generalized Asymmetric Student-t Distribution," CIRANO Working Papers 2009s-24, CIRANO.
    21. Tianyang Wang & James Dyer & Warren Hahn, 2015. "A copula-based approach for generating lattices," Review of Derivatives Research, Springer, vol. 18(3), pages 263-289, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:88:y:2020:i:3:p:797-801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.