How Risky Are the Options? A Comparison with the Underlying Stock Using MaxVaR as a Risk Measure
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Zhu, Dongming & Galbraith, John W., 2010.
"A generalized asymmetric Student-t distribution with application to financial econometrics,"
Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
- Dongming Zhu & John W. Galbraith, 2009. "A Generalized Asymmetric Student-t Distribution with Application to Financial Econometrics," CIRANO Working Papers 2009s-13, CIRANO.
- John Galbraith & Dongming Zhu, 2009. "A Generalized Asymmetric Student-T Distribution With Application To Financial Econometrics," Departmental Working Papers 2009-02, McGill University, Department of Economics.
- Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
- René M. Stulz, 1996. "Rethinking Risk Management," Journal of Applied Corporate Finance, Morgan Stanley, vol. 9(3), pages 8-25, September.
- Wenbo Hu & Alec Kercheval, 2010. "Portfolio optimization for student t and skewed t returns," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 91-105.
- Malay Bhattacharyya & Nityanand Misra & Bharat Kodase, 2009. "MaxVaR for non-normal and heteroskedastic returns," Quantitative Finance, Taylor & Francis Journals, vol. 9(8), pages 925-935.
- Walter Farkas & Ludovic Mathys & Nikola Vasiljevic, 2019. "Intra-Horizon Expected Shortfall and Risk Structure in Models with Jumps," Swiss Finance Institute Research Paper Series 19-76, Swiss Finance Institute.
- Rossello, Damiano, 2008. "MaxVaR with non-Gaussian distributed returns," European Journal of Operational Research, Elsevier, vol. 189(1), pages 159-171, August.
- Bakshi, Gurdip & Panayotov, George, 2010. "First-passage probability, jump models, and intra-horizon risk," Journal of Financial Economics, Elsevier, vol. 95(1), pages 20-40, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
- Walter Farkas & Ludovic Mathys & Nikola Vasiljevi'c, 2020. "Intra-Horizon Expected Shortfall and Risk Structure in Models with Jumps," Papers 2002.04675, arXiv.org, revised Jan 2021.
- Damiano Rossello & Silvestro Lo Cascio, 2021. "A refined measure of conditional maximum drawdown," Risk Management, Palgrave Macmillan, vol. 23(4), pages 301-321, December.
- Patra, Saswat, 2021. "Revisiting value-at-risk and expected shortfall in oil markets under structural breaks: The role of fat-tailed distributions," Energy Economics, Elsevier, vol. 101(C).
- Stavros Stavroyiannis, 2016. "Value-at-Risk and backtesting with the APARCH model and the standardized Pearson type IV distribution," Papers 1602.05749, arXiv.org.
- Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
- Jiang, Chun-Fu & Peng, Hong-Yi & Yang, Yu-Kuan, 2016. "Tail variance of portfolio under generalized Laplace distribution," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 187-203.
- Bakshi, Gurdip & Panayotov, George, 2010. "First-passage probability, jump models, and intra-horizon risk," Journal of Financial Economics, Elsevier, vol. 95(1), pages 20-40, January.
- Colletaz, Gilbert & Hurlin, Christophe & Pérignon, Christophe, 2013.
"The Risk Map: A new tool for validating risk models,"
Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3843-3854.
- Gilbert Colletaz & Christophe Hurlin & Christophe Pérignon, 2012. "The Risk Map: A New Tool for Validating Risk Models," Working Papers halshs-00746273, HAL.
- Gürtler, Marc & Rauh, Ronald, 2012. "Challenging traditional risk models by a non-stationary approach with nonparametric heteroscedasticity," Working Papers IF41V1, Technische Universität Braunschweig, Institute of Finance.
- Leonardo Ieracitano Vieira & Márcio Poletti Laurini, 2023. "Time-varying higher moments in Bitcoin," Digital Finance, Springer, vol. 5(2), pages 231-260, June.
- Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2017. "Risk quantification in turmoil markets," Risk Management, Palgrave Macmillan, vol. 19(3), pages 202-224, August.
- Michele Leonardo Bianchi & Gian Luca Tassinari & Frank J. Fabozzi, 2016. "Riding With The Four Horsemen And The Multivariate Normal Tempered Stable Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-28, June.
- Ibrahim Ergen, 2015. "Two-step methods in VaR prediction and the importance of fat tails," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1013-1030, June.
- González-Pedraz, Carlos & Moreno, Manuel & Peña, Juan Ignacio, 2014. "Tail risk in energy portfolios," Energy Economics, Elsevier, vol. 46(C), pages 422-434.
- Brenda Castillo-Brais & Ángel León & Juan Mora, 2022. "Estimating Value-at-Risk and Expected Shortfall: Do Polynomial Expansions Outperform Parametric Densities?," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
- Stavros Stavroyiannis & Leonidas Zarangas, 2013. "Out of Sample Value-at-Risk and Backtesting with the Standardized Pearson Type-IV Skewed Distribution," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 60(2), pages 231-247, April.
- Sree Vinutha Venkataraman & S. V. D. Nageswara Rao, 2016. "Estimation of dynamic VaR using JSU and PIV distributions," Risk Management, Palgrave Macmillan, vol. 18(2), pages 111-134, August.
- Daniel T. Cassidy & Michael J. Hamp & Rachid Ouyed, 2010. "Student's t-Distribution Based Option Sensitivities: Greeks for the Gosset Formulae," Papers 1003.1344, arXiv.org, revised Jul 2010.
- Stavros Degiannakis & Pamela Dent & Christos Floros, 2014.
"A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification,"
Manchester School, University of Manchester, vol. 82(1), pages 71-102, January.
- Degiannakis, Stavros & Dent, Pamela & Floros, Christos, 2014. "A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification," MPRA Paper 80431, University Library of Munich, Germany.
More about this item
Keywords
Pearson Type-IV; VaR; P& L; MaxVaR;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:8:y:2020:i:3:p:76-:d:383117. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.