IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v193y2023ics0047259x22001099.html
   My bibliography  Save this article

A new distance based measure of asymmetry

Author

Listed:
  • Baillien, Jonas
  • Gijbels, Irène
  • Verhasselt, Anneleen

Abstract

In a univariate setting there is a near unanimous agreement on the notion of skewness. Nevertheless, many more skewness measures, or also called asymmetry measures (or indices) exist, each with their benefits. Extending the concept of skewness or asymmetry to a multivariate setting is a much harder problem. Attempts have been made, but the unanimity of the univariate setting is no longer present. Most asymmetry indices are scalar or vector based measures, but this can lead to a loss of information concerning asymmetry. To this end, we propose a novel functional asymmetry index which is based on the natural idea of reflective symmetry around the mode. The proposed index is also extended to the multivariate setting and a summarizing scalar (or vector based index in multivariate setting) is derived from it.

Suggested Citation

  • Baillien, Jonas & Gijbels, Irène & Verhasselt, Anneleen, 2023. "A new distance based measure of asymmetry," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:jmvana:v:193:y:2023:i:c:s0047259x22001099
    DOI: 10.1016/j.jmva.2022.105118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X22001099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2022.105118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balakrishnan, N. & Scarpa, Bruno, 2012. "Multivariate measures of skewness for the skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 73-87, February.
    2. Boshnakov, Georgi N., 2007. "Some measures for asymmetry of distributions," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1111-1116, June.
    3. Ley, Christophe & Paindaveine, Davy, 2010. "Multivariate skewing mechanisms: A unified perspective based on the transformation approach," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1685-1694, December.
    4. Kollo, Tõnu, 2008. "Multivariate skewness and kurtosis measures with an application in ICA," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2328-2338, November.
    5. Andreas Eberl & Bernhard Klar, 2022. "Expectile‐based measures of skewness," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 373-399, March.
    6. Kasy Maximilian, 2019. "Uniformity and the Delta Method," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-19, January.
    7. Frank Critchley & M. C. Jones, 2008. "Asymmetry and Gradient Asymmetry Functions: Density‐Based Skewness and Kurtosis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 415-437, September.
    8. Andreas Eberl & Bernhard Klar, 2021. "A note on a measure of asymmetry," Statistical Papers, Springer, vol. 62(3), pages 1483-1497, June.
    9. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    10. Srivastava, M. S., 1984. "A measure of skewness and kurtosis and a graphical method for assessing multivariate normality," Statistics & Probability Letters, Elsevier, vol. 2(5), pages 263-267, October.
    11. P. Patil & P. Patil & D. Bagkavos, 2012. "A measure of asymmetry," Statistical Papers, Springer, vol. 53(4), pages 971-985, November.
    12. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    13. Irène Gijbels & Rezaul Karim & Anneleen Verhasselt, 2019. "On Quantile‐based Asymmetric Family of Distributions: Properties and Inference," International Statistical Review, International Statistical Institute, vol. 87(3), pages 471-504, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & Gyorgy H. Terdik, 2021. "On Multivariate Skewness and Kurtosis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 607-644, August.
    2. Baishuai Zuo & Narayanaswamy Balakrishnan & Chuancun Yin, 2023. "An analysis of multivariate measures of skewness and kurtosis of skew-elliptical distributions," Papers 2311.18176, arXiv.org.
    3. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    4. Abdi, Me’raj & Madadi, Mohsen & Balakrishnan, Narayanaswamy & Jamalizadeh, Ahad, 2021. "Family of mean-mixtures of multivariate normal distributions: Properties, inference and assessment of multivariate skewness," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    5. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    6. Lee, Sharon X. & McLachlan, Geoffrey J., 2022. "An overview of skew distributions in model-based clustering," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    7. Balakrishnan, N. & Scarpa, Bruno, 2012. "Multivariate measures of skewness for the skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 73-87, February.
    8. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & György H. Terdik, 2021. "Asymptotic theory for statistics based on cumulant vectors with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 708-728, June.
    9. Hanke, Michael & Penev, Spiridon & Schief, Wolfgang & Weissensteiner, Alex, 2017. "Random orthogonal matrix simulation with exact means, covariances, and multivariate skewness," European Journal of Operational Research, Elsevier, vol. 263(2), pages 510-523.
    10. Jonas Baillien & Irène Gijbels & Anneleen Verhasselt, 2023. "Flexible asymmetric multivariate distributions based on two-piece univariate distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 159-200, February.
    11. Christopher Partlett & Prakash Patil, 2017. "Measuring asymmetry and testing symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 429-460, April.
    12. Jorge M. Arevalillo & Hilario Navarro, 2019. "A stochastic ordering based on the canonical transformation of skew-normal vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 475-498, June.
    13. Jorge M. Arevalillo & Hilario Navarro, 2021. "Skewness-Kurtosis Model-Based Projection Pursuit with Application to Summarizing Gene Expression Data," Mathematics, MDPI, vol. 9(9), pages 1-18, April.
    14. Mehdi Amiri & Ahad Jamalizadeh & Mina Towhidi, 2015. "Inference and further probabilistic properties of the $$ SUN_{n,2}$$ S U N n , 2 -distribution," Statistical Papers, Springer, vol. 56(4), pages 1071-1098, November.
    15. Christophe Ley, 2014. "Flexible Modelling in Statistics: Past, present and Future," Working Papers ECARES ECARES 2014-42, ULB -- Universite Libre de Bruxelles.
    16. Gurjeet Dhesi & Bilal Shakeel & Marcel Ausloos, 2021. "Modelling and forecasting the kurtosis and returns distributions of financial markets: irrational fractional Brownian motion model approach," Annals of Operations Research, Springer, vol. 299(1), pages 1397-1410, April.
    17. Kurita, Eri & Seo, Takashi, 2022. "Multivariate normality test based on kurtosis with two-step monotone missing data," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    18. Rubio, Francisco Javier & Steel, Mark F. J., 2014. "Bayesian modelling of skewness and kurtosis with two-piece scale and shape transformations," MPRA Paper 57102, University Library of Munich, Germany.
    19. J. Rosco & M. Jones & Arthur Pewsey, 2011. "Skew t distributions via the sinh-arcsinh transformation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 630-652, November.
    20. Hea-Jung Kim, 2015. "A best linear threshold classification with scale mixture of skew normal populations," Computational Statistics, Springer, vol. 30(1), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:193:y:2023:i:c:s0047259x22001099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.