IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v49y2022i1p373-399.html
   My bibliography  Save this article

Expectile‐based measures of skewness

Author

Listed:
  • Andreas Eberl
  • Bernhard Klar

Abstract

In the literature, quite a few measures have been proposed for quantifying the deviation of a probability distribution from symmetry. The most popular of these skewness measures are based on the third centralized moment and on quantiles. However, there are major drawbacks in using these quantities. These include a strong emphasis on the distributional tails and a poor asymptotic behavior for the (empirical) moment‐based measure as well as difficult statistical inference and strange behaviour for discrete distributions for quantile‐based measures. Therefore, in this paper, we introduce skewness measures based on or connected with expectiles. Since expectiles can be seen as smoothed versions of quantiles, they preserve the advantages over the moment‐based measure while not exhibiting most of the disadvantages of quantile‐based measures. We introduce corresponding empirical counterparts and derive asymptotic properties. Finally, we conduct a simulation study, comparing the newly introduced measures with established ones, and evaluating the performance of the respective estimators.

Suggested Citation

  • Andreas Eberl & Bernhard Klar, 2022. "Expectile‐based measures of skewness," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 373-399, March.
  • Handle: RePEc:bla:scjsta:v:49:y:2022:i:1:p:373-399
    DOI: 10.1111/sjos.12518
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12518
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12518?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. I. H. Tajuddin, 1999. "A comparison between two simple measures of skewness," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(6), pages 767-774.
    2. Eberl, Andreas & Klar, Bernhard, 2020. "Asymptotic distributions and performance of empirical skewness measures," Computational Statistics & Data Analysis, Elsevier, vol. 146(C).
    3. Jones, M. C., 1994. "Expectiles and M-quantiles are quantiles," Statistics & Probability Letters, Elsevier, vol. 20(2), pages 149-153, May.
    4. Frank Critchley & M. C. Jones, 2008. "Asymmetry and Gradient Asymmetry Functions: Density‐Based Skewness and Kurtosis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 415-437, September.
    5. Fabio Bellini & Bernhard Klar & Alfred Müller, 2018. "Expectiles, Omega Ratios and Stochastic Ordering," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 855-873, September.
    6. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Kakes & Jan Willem van den End, 2023. "Identifying financial fragmentation: do sovereign spreads in the EMU reflect differences in fundamentals?," Working Papers 778, DNB.
    2. Baillien, Jonas & Gijbels, Irène & Verhasselt, Anneleen, 2023. "A new distance based measure of asymmetry," Journal of Multivariate Analysis, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Eberl & Bernhard Klar, 2023. "Stochastic orders and measures of skewness and dispersion based on expectiles," Statistical Papers, Springer, vol. 64(2), pages 509-527, April.
    2. Balter, Anne G. & Chau, Ki Wai & Schweizer, Nikolaus, 2024. "Comparative risk aversion vs. threshold choice in the Omega ratio," Omega, Elsevier, vol. 123(C).
    3. Arab, Idir & Lando, Tommaso & Oliveira, Paulo Eduardo, 2022. "Comparison of Lp-quantiles and related skewness measures," Statistics & Probability Letters, Elsevier, vol. 183(C).
    4. Cascos, Ignacio & Ochoa, Maicol, 2021. "Expectile depth: Theory and computation for bivariate datasets," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    5. repec:cte:wsrepe:28434 is not listed on IDEAS
    6. Zhang, Feipeng & Xu, Yixiong & Fan, Caiyun, 2023. "Nonparametric inference of expectile-based value-at-risk for financial time series with application to risk assessment," International Review of Financial Analysis, Elsevier, vol. 90(C).
    7. Abdelaati Daouia & Simone A. Padoan & Gilles Stupfler, 2024. "Extreme expectile estimation for short-tailed data," Post-Print hal-04672516, HAL.
    8. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
    9. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    10. V. Maume-Deschamps & D. Rullière & A. Usseglio-Carleve, 2018. "Spatial Expectile Predictions for Elliptical Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 643-671, June.
    11. Abdelaati Daouia & Stéphane Girard & Gilles Stupfler, 2018. "Estimation of tail risk based on extreme expectiles," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 263-292, March.
    12. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2017. "Extreme M-quantiles as risk measures: From L1 to Lp optimization," TSE Working Papers 17-841, Toulouse School of Economics (TSE).
    13. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2023. "Extreme expectile estimation for short-tailed data, with an application to market risk assessment," TSE Working Papers 23-1414, Toulouse School of Economics (TSE), revised May 2024.
    14. repec:hum:wpaper:sfb649dp2015-047 is not listed on IDEAS
    15. Gao, Suhao & Yu, Zhen, 2023. "Parametric expectile regression and its application for premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 242-256.
    16. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2023. "An expectile computation cookbook," TSE Working Papers 23-1458, Toulouse School of Economics (TSE).
    17. C. Adam & I. Gijbels, 2022. "Local polynomial expectile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 341-378, April.
    18. Alexander Wagner & Stan Uryasev, 2019. "Portfolio Optimization with Expectile and Omega Functions," Papers 1910.14005, arXiv.org.
    19. Samuel Drapeau & Mekonnen Tadese, 2019. "Dual Representation of Expectile based Expected Shortfall and Its Properties," Papers 1911.03245, arXiv.org.
    20. Fabio Bellini & Bernhard Klar & Alfred Müller, 2018. "Expectiles, Omega Ratios and Stochastic Ordering," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 855-873, September.
    21. Girard, Stéphane & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Functional estimation of extreme conditional expectiles," Econometrics and Statistics, Elsevier, vol. 21(C), pages 131-158.
    22. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2023. "Bias-reduced and variance-corrected asymptotic Gaussian inference about extreme expectiles," TSE Working Papers 23-1444, Toulouse School of Economics (TSE), revised Nov 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:49:y:2022:i:1:p:373-399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.