IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v88y2020i3p793-796.html
   My bibliography  Save this article

Letter to the Editor: ‘On Quantile‐based Asymmetric Family of Distributions: Properties and Inference’

Author

Listed:
  • Francisco J. Rubio Alvarez

Abstract

We show that the family of asymmetric distributions studied in a recent publication in the International Statistical Review is equivalent to the family of two‐piece distributions. Moreover, we show that the location‐scale asymmetric family proposed in that publication is non‐identifiable (overparameterised), and it coincides with the family of two‐piece distributions after removing the redundant parameters.

Suggested Citation

  • Francisco J. Rubio Alvarez, 2020. "Letter to the Editor: ‘On Quantile‐based Asymmetric Family of Distributions: Properties and Inference’," International Statistical Review, International Statistical Institute, vol. 88(3), pages 793-796, December.
  • Handle: RePEc:bla:istatr:v:88:y:2020:i:3:p:793-796
    DOI: 10.1111/insr.12425
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12425
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
    2. Zhu, Dongming & Galbraith, John W., 2010. "A generalized asymmetric Student-t distribution with application to financial econometrics," Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
    3. David Rossell & Francisco J. Rubio, 2018. "Tractable Bayesian Variable Selection: Beyond Normality," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1742-1758, October.
    4. Vahid Nassiri & Ignace Loris, 2013. "A generalized quantile regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(5), pages 1090-1105.
    5. Irène Gijbels & Rezaul Karim & Anneleen Verhasselt, 2019. "On Quantile‐based Asymmetric Family of Distributions: Properties and Inference," International Statistical Review, International Statistical Institute, vol. 87(3), pages 471-504, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irène Gijbels & Rezaul Karim & Anneleen Verhasselt, 2020. "Response to the Letter to the Editor on ‘On Quantile‐based Asymmetric Family of Distributions: Properties and Inference’," International Statistical Review, International Statistical Institute, vol. 88(3), pages 797-801, December.
    2. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.
    3. Emmanuel Afuecheta & Idika E. Okorie & Saralees Nadarajah & Geraldine E. Nzeribe, 2024. "Forecasting Value at Risk and Expected Shortfall of Foreign Exchange Rate Volatility of Major African Currencies via GARCH and Dynamic Conditional Correlation Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 271-304, January.
    4. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, October.
    5. Mahdi Teimouri & Saralees Nadarajah, 2022. "Maximum Likelihood Estimation for the Asymmetric Exponential Power Distribution," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 665-692, August.
    6. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
    7. Yasutomo Murasawa, 2013. "Measuring Inflation Expectations Using Interval-Coded Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(4), pages 602-623, August.
    8. Saralees Nadarajah & Emmanuel Afuecheta & Stephen Chan, 2015. "GARCH modeling of five popular commodities," Empirical Economics, Springer, vol. 48(4), pages 1691-1712, June.
    9. Victor Korolev & Alexander Zeifman, 2023. "Mixture Representations for Generalized Burr, Snedecor–Fisher and Generalized Student Distributions with Related Results," Mathematics, MDPI, vol. 11(18), pages 1-25, September.
    10. Wang, Jiazhen & Jiang, Yuexiang & Zhu, Yanjian & Yu, Jing, 2020. "Prediction of volatility based on realized-GARCH-kernel-type models: Evidence from China and the U.S," Economic Modelling, Elsevier, vol. 91(C), pages 428-444.
    11. Fabrizio Leisen & Luca Rossini & Cristiano Villa, 2020. "Loss-based approach to two-piece location-scale distributions with applications to dependent data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 309-333, June.
    12. Tata Subba Rao & Granville Tunnicliffe Wilson & Andrew Harvey & Rutger-Jan Lange, 2017. "Volatility Modeling with a Generalized t Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 175-190, March.
    13. Yuancheng Si & Saralees Nadarajah, 2023. "A Statistical Analysis of Chinese Stock Indices Returns From Approach of Parametric Distributions Fitting," Annals of Data Science, Springer, vol. 10(1), pages 73-88, February.
    14. Harvey, Andrew & Sucarrat, Genaro, 2014. "EGARCH models with fat tails, skewness and leverage," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
    15. Victor Korolev, 2023. "Analytic and Asymptotic Properties of the Generalized Student and Generalized Lomax Distributions," Mathematics, MDPI, vol. 11(13), pages 1-27, June.
    16. Nadarajah, Saralees & Chan, Stephen & Afuecheta, Emmanuel, 2013. "On the characteristic function for asymmetric Student t distributions," Economics Letters, Elsevier, vol. 121(2), pages 271-274.
    17. Robina Iqbal & Ghulam Sorwar & Rose Baker & Taufiq Choudhry, 2020. "Multiday expected shortfall under generalized t distributions: evidence from global stock market," Review of Quantitative Finance and Accounting, Springer, vol. 55(3), pages 803-825, October.
    18. J. Miguel Marin & Genaro Sucarrat, 2015. "Financial density selection," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1195-1213, November.
    19. Wang, Tianyi & Liang, Fang & Huang, Zhuo & Yan, Hong, 2022. "Do realized higher moments have information content? - VaR forecasting based on the realized GARCH-RSRK model," Economic Modelling, Elsevier, vol. 109(C).
    20. Zhu, Dongming & Galbraith, John W., 2011. "Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 765-778, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:88:y:2020:i:3:p:793-796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.