IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v60y2022i2d10.1007_s10614-021-10162-1.html
   My bibliography  Save this article

Maximum Likelihood Estimation for the Asymmetric Exponential Power Distribution

Author

Listed:
  • Mahdi Teimouri

    (Gonbad Kavous University)

  • Saralees Nadarajah

    (University of Manchester)

Abstract

The asymmetric exponential power (AEP) distribution has received much attention in economics and finance. Simulation study shows that iterative methods developed for finding the maximum likelihood (ML) estimates of the AEP distribution sometimes fail to converge. In this paper, the expectation–maximization (EM) algorithm is proposed to find the ML estimates of the AEP distribution which always converges. Performance of the EM algorithm is demonstrated by simulations and a real data illustration. As an application, the proposed EM algorithm is applied to find the ML estimates for the regression coefficients when the error term in a linear regression model follows the AEP distribution. Performance of the AEP distribution in robust simple regression modelling is established through a real data illustration.

Suggested Citation

  • Mahdi Teimouri & Saralees Nadarajah, 2022. "Maximum Likelihood Estimation for the Asymmetric Exponential Power Distribution," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 665-692, August.
  • Handle: RePEc:kap:compec:v:60:y:2022:i:2:d:10.1007_s10614-021-10162-1
    DOI: 10.1007/s10614-021-10162-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-021-10162-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-021-10162-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Butler, Richard J, et al, 1990. "Robust and Partially Adaptive Estimation of Regression Models," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 321-327, May.
    3. Ivana Komunjer, 2007. "Asymmetric power distribution: Theory and applications to risk measurement," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 891-921.
    4. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
    5. Zhu, Dongming & Galbraith, John W., 2010. "A generalized asymmetric Student-t distribution with application to financial econometrics," Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
    6. Panayiotis Theodossiou, 2015. "Skewed Generalized Error Distribution of Financial Assets and Option Pricing," Multinational Finance Journal, Multinational Finance Journal, vol. 19(4), pages 223-266, December.
    7. Basso, Rodrigo M. & Lachos, Víctor H. & Cabral, Celso Rômulo Barbosa & Ghosh, Pulak, 2010. "Robust mixture modeling based on scale mixtures of skew-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2926-2941, December.
    8. Prates, Marcos Oliveira & Lachos, Victor Hugo & Barbosa Cabral, Celso Rômulo, 2013. "mixsmsn: Fitting Finite Mixture of Scale Mixture of Skew-Normal Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i12).
    9. Hsieh, David A, 1989. "Modeling Heteroscedasticity in Daily Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(3), pages 307-317, July.
    10. Karlis, Dimitris & Xekalaki, Evdokia, 2003. "Choosing initial values for the EM algorithm for finite mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 577-590, January.
    11. Nolan, John P. & Ojeda-Revah, Diana, 2013. "Linear and nonlinear regression with stable errors," Journal of Econometrics, Elsevier, vol. 172(2), pages 186-194.
    12. Christoffersen, Peter & Dorion, Christian & Jacobs, Kris & Wang, Yintian, 2010. "Volatility Components, Affine Restrictions, and Nonnormal Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 483-502.
    13. Eugene F. Fama, 1963. "Mandelbrot and the Stable Paretian Hypothesis," The Journal of Business, University of Chicago Press, vol. 36, pages 420-420.
    14. DiCiccio T.J. & Monti A.C., 2004. "Inferential Aspects of the Skew Exponential Power Distribution," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 439-450, January.
    15. Nolan, John P., 1998. "Parameterizations and modes of stable distributions," Statistics & Probability Letters, Elsevier, vol. 38(2), pages 187-195, June.
    16. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
    2. J. Miguel Marin & Genaro Sucarrat, 2015. "Financial density selection," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1195-1213, November.
    3. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.
    4. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, September.
    5. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    6. Stefan Mittnik & Marc Paolella & Svetlozar Rachev, 1998. "Unconditional and Conditional Distributional Models for the Nikkei Index," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 5(2), pages 99-128, May.
    7. Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.
    8. W. D. Walls & Jordi McKenzie, 2020. "Black swan models for the entertainment industry with an application to the movie business," Empirical Economics, Springer, vol. 59(6), pages 3019-3032, December.
    9. Fabrizio Leisen & Luca Rossini & Cristiano Villa, 2020. "Loss-based approach to two-piece location-scale distributions with applications to dependent data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 309-333, June.
    10. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2000. "Diagnosing and treating the fat tails in financial returns data," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 389-416, November.
    11. Tata Subba Rao & Granville Tunnicliffe Wilson & Andrew Harvey & Rutger-Jan Lange, 2017. "Volatility Modeling with a Generalized t Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 175-190, March.
    12. Harvey, Andrew & Sucarrat, Genaro, 2014. "EGARCH models with fat tails, skewness and leverage," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
    13. Mendoza-Velázquez, Alfonso & Galvanovskis, Evalds, 2009. "Introducing the GED-Copula with an application to Financial Contagion in Latin America," MPRA Paper 46669, University Library of Munich, Germany, revised 01 Feb 2010.
    14. Victor Korolev, 2023. "Analytic and Asymptotic Properties of the Generalized Student and Generalized Lomax Distributions," Mathematics, MDPI, vol. 11(13), pages 1-27, June.
    15. Panayiotis Theodossiou, 2015. "Skewed Generalized Error Distribution of Financial Assets and Option Pricing," Multinational Finance Journal, Multinational Finance Journal, vol. 19(4), pages 223-266, December.
    16. A. T. Soyinka & A. A. Olosunde, 2021. "Inferences from Asymmetric Multivariate Exponential Power Distribution," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 350-370, November.
    17. Zhu, Dongming & Galbraith, John W., 2011. "Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 765-778, September.
    18. Dongweí Su, 2003. "Risk, Return and Regulation in Chinese Stock Markets," World Scientific Book Chapters, in: Chinese Stock Markets A Research Handbook, chapter 3, pages 75-122, World Scientific Publishing Co. Pte. Ltd..
    19. Bauer, Rob M M J & Nieuwland, Frederick G M C & Verschoor, Willem F C, 1994. "German Stock Market Dynamics," Empirical Economics, Springer, vol. 19(3), pages 397-418.
    20. Kaehler, Jürgen, 1991. "Modelling and forecasting exchange-rate volatility with ARCH-type models," ZEW Discussion Papers 91-02, ZEW - Leibniz Centre for European Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:60:y:2022:i:2:d:10.1007_s10614-021-10162-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.