IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v88y2020i1p29-53.html
   My bibliography  Save this article

A Unifying Framework and Comparison of Algorithms for Non‐negative Matrix Factorisation

Author

Listed:
  • Asger Hobolth
  • Qianyun Guo
  • Astrid Kousholt
  • Jens Ledet Jensen

Abstract

Non‐negative matrix factorisation (NMF) is an increasingly popular unsupervised learning method. However, parameter estimation in the NMF model is a difficult high‐dimensional optimisation problem. We consider algorithms of the alternating least squares type. Solutions to the least squares problem fall in two categories. The first category is iterative algorithms, which include algorithms such as the majorise–minimise (MM) algorithm, coordinate descent, gradient descent and the Févotte‐Cemgil expectation–maximisation (FC‐EM) algorithm. We introduce a new family of iterative updates based on a generalisation of the FC‐EM algorithm. The coordinate descent, gradient descent and FC‐EM algorithms are special cases of this new EM family of iterative procedures. Curiously, we show that the MM algorithm is never a member of our general EM algorithm. The second category is based on cone projection. We describe and prove a cone projection algorithm tailored to the non‐negative least square problem. We compare the algorithms on a test case and on the problem of identifying mutational signatures in human cancer. We generally find that cone projection is an attractive choice. Furthermore, in the cancer application, we find that a mix‐and‐match strategy performs better than running each algorithm in isolation.

Suggested Citation

  • Asger Hobolth & Qianyun Guo & Astrid Kousholt & Jens Ledet Jensen, 2020. "A Unifying Framework and Comparison of Algorithms for Non‐negative Matrix Factorisation," International Statistical Review, International Statistical Institute, vol. 88(1), pages 29-53, April.
  • Handle: RePEc:bla:istatr:v:88:y:2020:i:1:p:29-53
    DOI: 10.1111/insr.12331
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12331
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hunter D.R. & Lange K., 2004. "A Tutorial on MM Algorithms," The American Statistician, American Statistical Association, vol. 58, pages 30-37, February.
    2. Ravi Varadhan & Christophe Roland, 2008. "Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 335-353, June.
    3. Kenneth Lange & Eric C. Chi & Hua Zhou, 2014. "A Brief Survey of Modern Optimization for Statisticians," International Statistical Review, International Statistical Institute, vol. 82(1), pages 46-70, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Guo-Liang & Tang, Man-Lai & Liu, Chunling, 2012. "Accelerating the quadratic lower-bound algorithm via optimizing the shrinkage parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 255-265.
    2. Yoshihiro Kanno, 2018. "Robust truss topology optimization via semidefinite programming with complementarity constraints: a difference-of-convex programming approach," Computational Optimization and Applications, Springer, vol. 71(2), pages 403-433, November.
    3. Xifen Huang & Jinfeng Xu & Yunpeng Zhou, 2022. "Profile and Non-Profile MM Modeling of Cluster Failure Time and Analysis of ADNI Data," Mathematics, MDPI, vol. 10(4), pages 1-21, February.
    4. Greg Lewis & Bora Ozaltun & Georgios Zervas, 2021. "Maximum Likelihood Estimation of Differentiated Products Demand Systems," Papers 2111.12397, arXiv.org.
    5. Jurgen A. Doornik, 2018. "Accelerated Estimation of Switching Algorithms: The Cointegrated VAR Model and Other Applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(2), pages 283-300, June.
    6. Yue, Chen & Chen, Shaojie & Sair, Haris I. & Airan, Raag & Caffo, Brian S., 2015. "Estimating a graphical intra-class correlation coefficient (GICC) using multivariate probit-linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 126-133.
    7. Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
    8. FUKASAWA Takeshi & OHASHI Hiroshi, 2023. "Long-run Effect of a Horizontal Merger and Its Remedial Standards," Discussion papers 23001, Research Institute of Economy, Trade and Industry (RIETI).
    9. Utkarsh J. Dang & Michael P.B. Gallaugher & Ryan P. Browne & Paul D. McNicholas, 2023. "Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 145-167, April.
    10. V. Maume-Deschamps & D. Rullière & A. Usseglio-Carleve, 2018. "Spatial Expectile Predictions for Elliptical Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 643-671, June.
    11. McLachlan, Geoff & Lee, Sharon X, 2013. "EMMIXuskew: An R Package for Fitting Mixtures of Multivariate Skew t Distributions via the EM Algorithm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i12).
    12. Pál, László & Sándor, Zsolt, 2023. "Comparing procedures for estimating random coefficient logit demand models with a special focus on obtaining global optima," International Journal of Industrial Organization, Elsevier, vol. 88(C).
    13. Sanjeena Subedi & Drew Neish & Stephen Bak & Zeny Feng, 2020. "Cluster analysis of microbiome data by using mixtures of Dirichlet–multinomial regression models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1163-1187, November.
    14. Lian, Heng & Meng, Jie & Fan, Zengyan, 2015. "Simultaneous estimation of linear conditional quantiles with penalized splines," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 1-21.
    15. Chun Yin Lee & Kin Yau Wong & Kwok Fai Lam & Dipankar Bandyopadhyay, 2023. "A semiparametric joint model for cluster size and subunit‐specific interval‐censored outcomes," Biometrics, The International Biometric Society, vol. 79(3), pages 2010-2022, September.
    16. Dennis Leung & Wenguang Sun, 2022. "ZAP: Z$$ Z $$‐value adaptive procedures for false discovery rate control with side information," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1886-1946, November.
    17. Yongge Tian, 2017. "Transformation approaches of linear random-effects models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 583-608, November.
    18. Vu, Duy & Aitkin, Murray, 2015. "Variational algorithms for biclustering models," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 12-24.
    19. Gunter Maris & Han Maas, 2012. "Speed-Accuracy Response Models: Scoring Rules based on Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 615-633, October.
    20. Yen, Tso-Jung & Yen, Yu-Min, 2016. "Structured variable selection via prior-induced hierarchical penalty functions," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 87-103.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:88:y:2020:i:1:p:29-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.