Accelerating the quadratic lower-bound algorithm via optimizing the shrinkage parameter
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2011.07.013
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hunter D.R. & Lange K., 2004. "A Tutorial on MM Algorithms," The American Statistician, American Statistical Association, vol. 58, pages 30-37, February.
- Mingfeng Wang & Masahiro Kuroda & Michio Sakakihara & Zhi Geng, 2008. "Acceleration of the EM algorithm using the vector epsilon algorithm," Computational Statistics, Springer, vol. 23(3), pages 469-486, July.
- Dankmar Böhning & Bruce Lindsay, 1988. "Monotonicity of quadratic-approximation algorithms," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(4), pages 641-663, December.
- Ravi Varadhan & Christophe Roland, 2008. "Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 335-353, June.
- Dankmar Böhning, 1992. "Multinomial logistic regression algorithm," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(1), pages 197-200, March.
- Kuroda, Masahiro & Sakakihara, Michio, 2006. "Accelerating the convergence of the EM algorithm using the vector [epsilon] algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1549-1561, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jonathan James, 2012. "A tractable estimator for general mixed multinomial logit models," Working Papers (Old Series) 1219, Federal Reserve Bank of Cleveland.
- Utkarsh J. Dang & Michael P.B. Gallaugher & Ryan P. Browne & Paul D. McNicholas, 2023. "Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 145-167, April.
- Masahiro Kuroda & Zhi Geng & Michio Sakakihara, 2015. "Improving the vector $$\varepsilon $$ ε acceleration for the EM algorithm using a re-starting procedure," Computational Statistics, Springer, vol. 30(4), pages 1051-1077, December.
- Tian, Guo-Liang & Tang, Man-Lai & Fang, Hong-Bin & Tan, Ming, 2008. "Efficient methods for estimating constrained parameters with applications to regularized (lasso) logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3528-3542, March.
- Kuroda, Masahiro & Mori, Yuichi & Iizuka, Masaya & Sakakihara, Michio, 2011. "Acceleration of the alternating least squares algorithm for principal components analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 143-153, January.
- Bohning, Dankmar, 1999. "The lower bound method in probit regression," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 13-17, March.
- de Leeuw, Jan & Lange, Kenneth, 2009. "Sharp quadratic majorization in one dimension," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2471-2484, May.
- Xifen Huang & Jinfeng Xu & Yunpeng Zhou, 2022. "Profile and Non-Profile MM Modeling of Cluster Failure Time and Analysis of ADNI Data," Mathematics, MDPI, vol. 10(4), pages 1-21, February.
- Berlinet, A.F. & Roland, Ch., 2012. "Acceleration of the EM algorithm: P-EM versus epsilon algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4122-4137.
- Durante, Daniele & Canale, Antonio & Rigon, Tommaso, 2019. "A nested expectation–maximization algorithm for latent class models with covariates," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 97-103.
- repec:fip:fedcwp:12-19 is not listed on IDEAS
- Ding, Jieli & Tian, Guo-Liang & Yuen, Kam Chuen, 2015. "A new MM algorithm for constrained estimation in the proportional hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 135-151.
- Asger Hobolth & Qianyun Guo & Astrid Kousholt & Jens Ledet Jensen, 2020. "A Unifying Framework and Comparison of Algorithms for Non‐negative Matrix Factorisation," International Statistical Review, International Statistical Institute, vol. 88(1), pages 29-53, April.
- Saâdaoui, Foued, 2023. "Randomized extrapolation for accelerating EM-type fixed-point algorithms," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
- Greg Lewis & Bora Ozaltun & Georgios Zervas, 2021. "Maximum Likelihood Estimation of Differentiated Products Demand Systems," Papers 2111.12397, arXiv.org.
- Rasmus Lentz & Jean Marc Robin & Suphanit Piyapromdee, 2018.
"On Worker and Firm Heterogeneity in Wages and Employment Mobility: Evidence from Danish Register Data,"
2018 Meeting Papers
469, Society for Economic Dynamics.
- Rasmus Lentz & Suphanit Piyapromdee & Jean-Marc Robin, 2018. "On Worker and Firm Heterogeneity in Wages and Employment Mobility: Evidence from Danish Register Data," PIER Discussion Papers 91, Puey Ungphakorn Institute for Economic Research.
- Wang, Fa, 2017. "Maximum likelihood estimation and inference for high dimensional nonlinear factor models with application to factor-augmented regressions," MPRA Paper 93484, University Library of Munich, Germany, revised 19 May 2019.
- de Leeuw, Jan, 2006. "Principal component analysis of binary data by iterated singular value decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 21-39, January.
- Jurgen A. Doornik, 2018.
"Accelerated Estimation of Switching Algorithms: The Cointegrated VAR Model and Other Applications,"
Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(2), pages 283-300, June.
- Jurgen A. Doornik, 2017. "Accelerated Estimation of Switching Algorithms: The Cointegrated VAR Model and Other Applications," Economics Papers 2017-W05, Economics Group, Nuffield College, University of Oxford.
- Roussille, Nina & Scuderi, Benjamin, 2023. "Bidding for Talent: A Test of Conduct in a High-Wage Labor Market," IZA Discussion Papers 16352, Institute of Labor Economics (IZA).
- Yue, Chen & Chen, Shaojie & Sair, Haris I. & Airan, Raag & Caffo, Brian S., 2015. "Estimating a graphical intra-class correlation coefficient (GICC) using multivariate probit-linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 126-133.
More about this item
Keywords
Cox proportional hazards model; EM-type algorithms; Logistic regression; Newton–Raphson algorithm; Optimal QLB algorithm; QLB algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:2:p:255-265. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.