IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i2p255-265.html
   My bibliography  Save this article

Accelerating the quadratic lower-bound algorithm via optimizing the shrinkage parameter

Author

Listed:
  • Tian, Guo-Liang
  • Tang, Man-Lai
  • Liu, Chunling

Abstract

When the Newton–Raphson algorithm or the Fisher scoring algorithm does not work and the EM-type algorithms are not available, the quadratic lower-bound (QLB) algorithm may be a useful optimization tool. However, like all EM-type algorithms, the QLB algorithm may also suffer from slow convergence which can be viewed as the cost for having the ascent property. This paper proposes a novel ‘shrinkage parameter’ approach to accelerate the QLB algorithm while maintaining its simplicity and stability (i.e., monotonic increase in log-likelihood). The strategy is first to construct a class of quadratic surrogate functions Qr(θ|θ(t)) that induces a class of QLB algorithms indexed by a ‘shrinkage parameter’ r (r∈R) and then to optimize r over R under some criterion of convergence. For three commonly used criteria (i.e., the smallest eigenvalue, the trace and the determinant), we derive a uniformly optimal shrinkage parameter and find an optimal QLB algorithm. Some theoretical justifications are also presented. Next, we generalize the optimal QLB algorithm to problems with penalizing function and then investigate the associated properties of convergence. The optimal QLB algorithm is applied to fit a logistic regression model and a Cox proportional hazards model. Two real datasets are analyzed to illustrate the proposed methods.

Suggested Citation

  • Tian, Guo-Liang & Tang, Man-Lai & Liu, Chunling, 2012. "Accelerating the quadratic lower-bound algorithm via optimizing the shrinkage parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 255-265.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:2:p:255-265
    DOI: 10.1016/j.csda.2011.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311002672
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunter D.R. & Lange K., 2004. "A Tutorial on MM Algorithms," The American Statistician, American Statistical Association, vol. 58, pages 30-37, February.
    2. Mingfeng Wang & Masahiro Kuroda & Michio Sakakihara & Zhi Geng, 2008. "Acceleration of the EM algorithm using the vector epsilon algorithm," Computational Statistics, Springer, vol. 23(3), pages 469-486, July.
    3. Dankmar Böhning & Bruce Lindsay, 1988. "Monotonicity of quadratic-approximation algorithms," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(4), pages 641-663, December.
    4. Ravi Varadhan & Christophe Roland, 2008. "Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 335-353, June.
    5. Dankmar Böhning, 1992. "Multinomial logistic regression algorithm," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(1), pages 197-200, March.
    6. Kuroda, Masahiro & Sakakihara, Michio, 2006. "Accelerating the convergence of the EM algorithm using the vector [epsilon] algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1549-1561, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan James, 2012. "A tractable estimator for general mixed multinomial logit models," Working Papers (Old Series) 1219, Federal Reserve Bank of Cleveland.
    2. Utkarsh J. Dang & Michael P.B. Gallaugher & Ryan P. Browne & Paul D. McNicholas, 2023. "Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 145-167, April.
    3. Bohning, Dankmar, 1999. "The lower bound method in probit regression," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 13-17, March.
    4. Berlinet, A.F. & Roland, Ch., 2012. "Acceleration of the EM algorithm: P-EM versus epsilon algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4122-4137.
    5. Durante, Daniele & Canale, Antonio & Rigon, Tommaso, 2019. "A nested expectation–maximization algorithm for latent class models with covariates," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 97-103.
    6. repec:fip:fedcwp:12-19 is not listed on IDEAS
    7. Ding, Jieli & Tian, Guo-Liang & Yuen, Kam Chuen, 2015. "A new MM algorithm for constrained estimation in the proportional hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 135-151.
    8. Masahiro Kuroda & Zhi Geng & Michio Sakakihara, 2015. "Improving the vector $$\varepsilon $$ ε acceleration for the EM algorithm using a re-starting procedure," Computational Statistics, Springer, vol. 30(4), pages 1051-1077, December.
    9. Tian, Guo-Liang & Tang, Man-Lai & Fang, Hong-Bin & Tan, Ming, 2008. "Efficient methods for estimating constrained parameters with applications to regularized (lasso) logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3528-3542, March.
    10. Kuroda, Masahiro & Mori, Yuichi & Iizuka, Masaya & Sakakihara, Michio, 2011. "Acceleration of the alternating least squares algorithm for principal components analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 143-153, January.
    11. de Leeuw, Jan & Lange, Kenneth, 2009. "Sharp quadratic majorization in one dimension," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2471-2484, May.
    12. Xifen Huang & Jinfeng Xu & Yunpeng Zhou, 2022. "Profile and Non-Profile MM Modeling of Cluster Failure Time and Analysis of ADNI Data," Mathematics, MDPI, vol. 10(4), pages 1-21, February.
    13. Asger Hobolth & Qianyun Guo & Astrid Kousholt & Jens Ledet Jensen, 2020. "A Unifying Framework and Comparison of Algorithms for Non‐negative Matrix Factorisation," International Statistical Review, International Statistical Institute, vol. 88(1), pages 29-53, April.
    14. Saâdaoui, Foued, 2023. "Randomized extrapolation for accelerating EM-type fixed-point algorithms," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    15. Greg Lewis & Bora Ozaltun & Georgios Zervas, 2021. "Maximum Likelihood Estimation of Differentiated Products Demand Systems," Papers 2111.12397, arXiv.org.
    16. Jurgen A. Doornik, 2018. "Accelerated Estimation of Switching Algorithms: The Cointegrated VAR Model and Other Applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(2), pages 283-300, June.
    17. Roussille, Nina & Scuderi, Benjamin, 2023. "Bidding for Talent: A Test of Conduct in a High-Wage Labor Market," IZA Discussion Papers 16352, Institute of Labor Economics (IZA).
    18. Yue, Chen & Chen, Shaojie & Sair, Haris I. & Airan, Raag & Caffo, Brian S., 2015. "Estimating a graphical intra-class correlation coefficient (GICC) using multivariate probit-linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 126-133.
    19. Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
    20. Wang, Fa, 2022. "Maximum likelihood estimation and inference for high dimensional generalized factor models with application to factor-augmented regressions," Journal of Econometrics, Elsevier, vol. 229(1), pages 180-200.
    21. FUKASAWA Takeshi & OHASHI Hiroshi, 2023. "Long-run Effect of a Horizontal Merger and Its Remedial Standards," Discussion papers 23001, Research Institute of Economy, Trade and Industry (RIETI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:2:p:255-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.