IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v71y2018i2d10.1007_s10589-018-0013-3.html
   My bibliography  Save this article

Robust truss topology optimization via semidefinite programming with complementarity constraints: a difference-of-convex programming approach

Author

Listed:
  • Yoshihiro Kanno

    (The University of Tokyo)

Abstract

The robust truss topology optimization against the uncertain static external load can be formulated as mixed-integer semidefinite programming. Although a global optimal solution can be computed with a branch-and-bound method, it is very time-consuming. This paper presents an alternative formulation, semidefinite programming with complementarity constraints, and proposes an efficient heuristic. The proposed method is based upon the concave–convex procedure for difference-of-convex programming. It is shown that the method can often find a practically reasonable truss design within the computational cost of solving some dozen of convex optimization subproblems.

Suggested Citation

  • Yoshihiro Kanno, 2018. "Robust truss topology optimization via semidefinite programming with complementarity constraints: a difference-of-convex programming approach," Computational Optimization and Applications, Springer, vol. 71(2), pages 403-433, November.
  • Handle: RePEc:spr:coopap:v:71:y:2018:i:2:d:10.1007_s10589-018-0013-3
    DOI: 10.1007/s10589-018-0013-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-018-0013-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-018-0013-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunter D.R. & Lange K., 2004. "A Tutorial on MM Algorithms," The American Statistician, American Statistical Association, vol. 58, pages 30-37, February.
    2. Kenneth Lange & Eric C. Chi & Hua Zhou, 2014. "A Brief Survey of Modern Optimization for Statisticians," International Statistical Review, International Statistical Institute, vol. 82(1), pages 46-70, April.
    3. Le An & Pham Tao, 2005. "The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems," Annals of Operations Research, Springer, vol. 133(1), pages 23-46, January.
    4. Amir Beck & Aharon Ben-Tal & Luba Tetruashvili, 2010. "A sequential parametric convex approximation method with applications to nonconvex truss topology design problems," Journal of Global Optimization, Springer, vol. 47(1), pages 29-51, May.
    5. Hoai Le Thi & Tao Pham Dinh, 2011. "On solving Linear Complementarity Problems by DC programming and DCA," Computational Optimization and Applications, Springer, vol. 50(3), pages 507-524, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kerstin Dächert & Sauleh Siddiqui & Javier Saez-Gallego & Steven A. Gabriel & Juan Miguel Morales, 2019. "A Bicriteria Perspective on L-Penalty Approaches – a Corrigendum to Siddiqui and Gabriel’s L-Penalty Approach for Solving MPECs," Networks and Spatial Economics, Springer, vol. 19(4), pages 1199-1214, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoai An Thi & Thi Minh Tam Nguyen & Tao Pham Dinh, 2023. "On solving difference of convex functions programs with linear complementarity constraints," Computational Optimization and Applications, Springer, vol. 86(1), pages 163-197, September.
    2. L. Abdallah & M. Haddou & T. Migot, 2019. "A sub-additive DC approach to the complementarity problem," Computational Optimization and Applications, Springer, vol. 73(2), pages 509-534, June.
    3. Joaquim Júdice, 2012. "Algorithms for linear programming with linear complementarity constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 4-25, April.
    4. Liming Yang & Laisheng Wang, 2013. "A class of semi-supervised support vector machines by DC programming," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 417-433, December.
    5. Asger Hobolth & Qianyun Guo & Astrid Kousholt & Jens Ledet Jensen, 2020. "A Unifying Framework and Comparison of Algorithms for Non‐negative Matrix Factorisation," International Statistical Review, International Statistical Institute, vol. 88(1), pages 29-53, April.
    6. Min Tao & Jiang-Ning Li, 2023. "Error Bound and Isocost Imply Linear Convergence of DCA-Based Algorithms to D-Stationarity," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 205-232, April.
    7. Rasmus Lentz & Jean Marc Robin & Suphanit Piyapromdee, 2018. "On Worker and Firm Heterogeneity in Wages and Employment Mobility: Evidence from Danish Register Data," 2018 Meeting Papers 469, Society for Economic Dynamics.
    8. Hoai An Le Thi & Van Ngai Huynh & Tao Pham Dinh, 2018. "Convergence Analysis of Difference-of-Convex Algorithm with Subanalytic Data," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 103-126, October.
    9. João Carlos O. Souza & Paulo Roberto Oliveira & Antoine Soubeyran, 2016. "Global convergence of a proximal linearized algorithm for difference of convex functions," Post-Print hal-01440298, HAL.
    10. Yuan, Quan & Liu, Binghui, 2021. "Community detection via an efficient nonconvex optimization approach based on modularity," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    11. Laura Girometti & Martin Huska & Alessandro Lanza & Serena Morigi, 2024. "Convex Predictor–Nonconvex Corrector Optimization Strategy with Application to Signal Decomposition," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1286-1325, September.
    12. J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
    13. Crystal T. Nguyen & Daniel J. Luckett & Anna R. Kahkoska & Grace E. Shearrer & Donna Spruijt‐Metz & Jaimie N. Davis & Michael R. Kosorok, 2020. "Estimating individualized treatment regimes from crossover designs," Biometrics, The International Biometric Society, vol. 76(3), pages 778-788, September.
    14. M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
    15. Ming Huang & Li-Ping Pang & Zun-Quan Xia, 2014. "The space decomposition theory for a class of eigenvalue optimizations," Computational Optimization and Applications, Springer, vol. 58(2), pages 423-454, June.
    16. Songfeng Zheng, 2021. "KLERC: kernel Lagrangian expectile regression calculator," Computational Statistics, Springer, vol. 36(1), pages 283-311, March.
    17. Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
    18. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    19. Nguyen Thai An & Nguyen Mau Nam & Xiaolong Qin, 2020. "Solving k-center problems involving sets based on optimization techniques," Journal of Global Optimization, Springer, vol. 76(1), pages 189-209, January.
    20. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:71:y:2018:i:2:d:10.1007_s10589-018-0013-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.