Simultaneous estimation of linear conditional quantiles with penalized splines
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2015.06.010
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hunter D.R. & Lange K., 2004. "A Tutorial on MM Algorithms," The American Statistician, American Statistical Association, vol. 58, pages 30-37, February.
- Heng Lian, 2012. "Semiparametric Estimation of Additive Quantile Regression Models by Two-Fold Penalty," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 337-350, March.
- V. Chernozhukov & I. Fernández-Val & A. Galichon, 2009.
"Improving point and interval estimators of monotone functions by rearrangement,"
Biometrika, Biometrika Trust, vol. 96(3), pages 559-575.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2008. "Improving Point and Interval Estimates of Monotone Functions by Rearrangement," Papers 0806.4730, arXiv.org, revised Nov 2008.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," Post-Print hal-03596970, HAL.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," SciencePo Working papers Main hal-03596970, HAL.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2008. "Improving point and interval estimates of monotone functions by rearrangement," CeMMAP working papers CWP17/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Yu Y. & Ruppert D., 2002. "Penalized Spline Estimation for Partially Linear Single-Index Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1042-1054, December.
- De Gooijer J.G. & Zerom D., 2003. "On Additive Conditional Quantiles With High Dimensional Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 135-146, January.
- Howard D. Bondell & Brian J. Reich & Huixia Wang, 2010. "Noncrossing quantile regression curve estimation," Biometrika, Biometrika Trust, vol. 97(4), pages 825-838.
- Horowitz, Joel L. & Lee, Sokbae, 2005.
"Nonparametric Estimation of an Additive Quantile Regression Model,"
Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1238-1249, December.
- Joel L. Horowitz & Sokbae (Simon) Lee, 2004. "Nonparametric estimation of an additive quantile regression model," CeMMAP working papers CWP07/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Joel L. Horowitz & Sokbae (Simon) Lee, 2004. "Nonparametric estimation of an additive quantile regression model," CeMMAP working papers 07/04, Institute for Fiscal Studies.
- Sokbae Lee & Joel L. Horowitz, 2004. "Nonparametric Estimation of an Additive Quantile Regression Model," Econometric Society 2004 Far Eastern Meetings 721, Econometric Society.
- Holger Dette & Stanislav Volgushev, 2008. "Non‐crossing non‐parametric estimates of quantile curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 609-627, July.
- Yuan, Ming, 2006. "GACV for quantile smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 813-829, February.
- Fang Yao & Thomas C. M. Lee, 2006. "Penalized spline models for functional principal component analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 3-25, February.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Feng, Xingdong & Liu, Qiaochu & Wang, Caixing, 2023. "A lack-of-fit test for quantile regression process models," Statistics & Probability Letters, Elsevier, vol. 192(C).
- Park, Seyoung & Kim, Hyunjin & Lee, Eun Ryung, 2023. "Regional quantile regression for multiple responses," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
- Ziyi Li & Yijian Huang & Dattatraya Patil & Martin G. Sanda, 2023. "Covariate adjustment in continuous biomarker assessment," Biometrics, The International Biometric Society, vol. 79(1), pages 39-48, March.
- Ta‐Hsin Li, 2021. "Quantile‐frequency analysis and spectral measures for diagnostic checks of time series with nonlinear dynamics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 270-290, March.
- Cheng Peng & Stanislav Uryasev, 2023. "Factor Model of Mixtures," Papers 2301.13843, arXiv.org, revised Mar 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Weihua Zhao & Jianbo Li & Heng Lian, 2018. "Adaptive varying-coefficient linear quantile model: a profiled estimating equations approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 553-582, June.
- Wu, Chaojiang & Yu, Yan, 2014. "Partially linear modeling of conditional quantiles using penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 170-187.
- Fan, Zengyan & Lian, Heng, 2018. "Quantile regression for additive coefficient models in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 54-64.
- Holger Dette & Matthias Guhlich & Natalie Neumeyer, 2015. "Testing for additivity in nonparametric quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 437-477, June.
- Wu, Tracy Z. & Yu, Keming & Yu, Yan, 2010. "Single-index quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1607-1621, August.
- Shaogao Lv & Xin He & Junhui Wang, 2017. "A unified penalized method for sparse additive quantile models: an RKHS approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 897-923, August.
- Sherwood, Ben, 2016. "Variable selection for additive partial linear quantile regression with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 206-223.
- Yijian Huang, 2017. "Restoration of Monotonicity Respecting in Dynamic Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 613-622, April.
- Catania, Leopoldo & Luati, Alessandra, 2023. "Semiparametric modeling of multiple quantiles," Journal of Econometrics, Elsevier, vol. 237(2).
- Rodrigues, T. & Dortet-Bernadet, J.-L. & Fan, Y., 2019. "Simultaneous fitting of Bayesian penalised quantile splines," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 93-109.
- Zhao, Weihua & Lian, Heng, 2017. "Quantile index coefficient model with variable selection," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 40-58.
- Cai, Zongwu & Xu, Xiaoping, 2009.
"Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models,"
Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
- Cai, Zongwu & Xu, Xiaoping, 2008. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1595-1608.
- Xiaoping Xu & Zongwu Cai, 2013. "Nonparametric Quantile Estimations For Dynamic Smooth Coefficient Models," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
- Ilaria Lucrezia Amerise, 2013. "Weighted Non-Crossing Quantile Regressions," Working Papers 201308, Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania" - DESF.
- Yunyun Wang & Tatsushi Oka & Dan Zhu, 2024. "Inflation Target at Risk: A Time-varying Parameter Distributional Regression," Papers 2403.12456, arXiv.org.
- Takuma Yoshida, 2021. "Additive models for extremal quantile regression with Pareto-type distributions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 103-134, March.
- repec:wyi:journl:002112 is not listed on IDEAS
- Yue, Yu Ryan & Rue, Håvard, 2011. "Bayesian inference for additive mixed quantile regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 84-96, January.
- Hao, Meiling & Lin, Yuanyuan & Shen, Guohao & Su, Wen, 2023. "Nonparametric inference on smoothed quantile regression process," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
- Mohamed Ouhourane & Yi Yang & Andréa L. Benedet & Karim Oualkacha, 2022. "Group penalized quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 495-529, September.
- Philippe Van Kerm & Seunghee Yu & Chung Choe, 2016. "Decomposing quantile wage gaps: a conditional likelihood approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 507-527, August.
- Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019.
"Conditional quantile processes based on series or many regressors,"
Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Iv'an Fern'andez-Val, 2011. "Conditional Quantile Processes based on Series or Many Regressors," Papers 1105.6154, arXiv.org, revised Aug 2018.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val, 2011. "Conditional quantile processes based on series or many regressors," CeMMAP working papers CWP19/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Ivan Fernandez-Val, 2016. "Conditional quantile processes based on series or many regressors," CeMMAP working papers CWP46/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Ivan Fernandez-Val, 2016. "Conditional quantile processes based on series or many regressors," CeMMAP working papers 46/16, Institute for Fiscal Studies.
More about this item
Keywords
Gaussian process; Quantile process; Spline approximation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:141:y:2015:i:c:p:1-21. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.