A comparison of optimization solvers for log binomial regression including conic programming
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-021-01084-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hunter D.R. & Lange K., 2004. "A Tutorial on MM Algorithms," The American Statistician, American Statistical Association, vol. 58, pages 30-37, February.
- H. Kaufmann, 1988. "On existence and uniqueness of maximum likelihood estimates in quantal and ordinal response models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 35(1), pages 291-313, December.
- Brendan O’Donoghue & Eric Chu & Neal Parikh & Stephen Boyd, 2016. "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1042-1068, June.
- Bernardo Borba de Andrade & Joanlise Marco de Leon Andrade, 2018. "Some results for maximum likelihood estimation of adjusted relative risks," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(23), pages 5750-5769, December.
- Konis, Kjell & Fokianos, Konstantinos, 2009. "Safe density ratio modeling," Statistics & Probability Letters, Elsevier, vol. 79(18), pages 1915-1920, September.
- Ji Luo & Jiajia Zhang & Han Sun, 2014. "Estimation of relative risk using a log-binomial model with constraints," Computational Statistics, Springer, vol. 29(5), pages 981-1003, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrew Butler & Roy H. Kwon, 2023. "Efficient differentiable quadratic programming layers: an ADMM approach," Computational Optimization and Applications, Springer, vol. 84(2), pages 449-476, March.
- Enzo Busseti, 2019. "Derivative of a Conic Problem with a Unique Solution," Papers 1903.05753, arXiv.org, revised Mar 2019.
- da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023.
"Risk budgeting portfolios from simulations,"
European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
- Bernardo Freitas Paulo da Costa & Silvana M. Pesenti & Rodrigo S. Targino, 2023. "Risk Budgeting Portfolios from Simulations," Papers 2302.01196, arXiv.org.
- Leo Liberti, 2020. "Distance geometry and data science," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 271-339, July.
- Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
- Johannes Friedrich & Pengcheng Zhou & Liam Paninski, 2017. "Fast online deconvolution of calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-26, March.
- Andrew Butler & Roy Kwon, 2021. "Efficient differentiable quadratic programming layers: an ADMM approach," Papers 2112.07464, arXiv.org.
- Utkarsh J. Dang & Michael P.B. Gallaugher & Ryan P. Browne & Paul D. McNicholas, 2023. "Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 145-167, April.
- V. Maume-Deschamps & D. Rullière & A. Usseglio-Carleve, 2018. "Spatial Expectile Predictions for Elliptical Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 643-671, June.
- Jianming Pan & Zeqi Ye & Xiao Yang & Xu Yang & Weiqing Liu & Lewen Wang & Jiang Bian, 2024. "BPQP: A Differentiable Convex Optimization Framework for Efficient End-to-End Learning," Papers 2411.19285, arXiv.org, revised Dec 2024.
- Sanjeena Subedi & Drew Neish & Stephen Bak & Zeny Feng, 2020. "Cluster analysis of microbiome data by using mixtures of Dirichlet–multinomial regression models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1163-1187, November.
- Lian, Heng & Meng, Jie & Fan, Zengyan, 2015. "Simultaneous estimation of linear conditional quantiles with penalized splines," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 1-21.
- Tian, Guo-Liang & Tang, Man-Lai & Liu, Chunling, 2012. "Accelerating the quadratic lower-bound algorithm via optimizing the shrinkage parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 255-265.
- Sun, Qinghe & Chen, Li & Meng, Qiang, 2022. "Evaluating port efficiency dynamics: A risk-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 333-347.
- Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Zhu, Bangzhu, 2020. "Modeling and forecasting the dynamics of the natural gas transmission network in Germany with the demand and supply balance constraint," Applied Energy, Elsevier, vol. 278(C).
- Vu, Duy & Aitkin, Murray, 2015. "Variational algorithms for biclustering models," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 12-24.
- Gunter Maris & Han Maas, 2012. "Speed-Accuracy Response Models: Scoring Rules based on Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 615-633, October.
- Run Chen & Andrew L. Liu, 2021. "A distributed algorithm for high-dimension convex quadratically constrained quadratic programs," Computational Optimization and Applications, Springer, vol. 80(3), pages 781-830, December.
- Yen, Tso-Jung & Yen, Yu-Min, 2016. "Structured variable selection via prior-induced hierarchical penalty functions," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 87-103.
- Ouindllassida Jean-Etienne Ou´edraogo & Edoh Katchekpele & Simplice Dossou-Gb´et´e, 2021. "Marginalized Maximum Likelihood for Parameters Estimation of the Three Parameter Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(4), pages 1-62, July.
More about this item
Keywords
Log-binomial regression; Relative risk; Optimization; Conic programming;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:36:y:2021:i:3:d:10.1007_s00180-021-01084-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.