IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v78y2010i1p117-133.html
   My bibliography  Save this article

Modelling and Estimation for Bivariate Financial Returns

Author

Listed:
  • Thomas Fung
  • Eugene Seneta

Abstract

Maximum likelihood estimates are obtained for long data sets of bivariate financial returns using mixing representation of the bivariate (skew) Variance Gamma (VG) and two (skew) t distributions. By analysing simulated and real data, issues such as asymptotic lower tail dependence and competitiveness of the three models are illustrated. A brief review of the properties of the models is included. The present paper is a companion to papers in this journal by Demarta & McNeil and Finlay & Seneta. Des estimateurs maximum de vraisemblance sont obtenus pour de longues séries bivariées de rendements financiers modélisées à partir d'un mélange (asymétrique) de type Variance‐Gamma et de deux mélanges (asymétriques) de type Student. L'analyse de données simulées et réelles permet d'illustrer quelques‐uns des aspects asymptotiques de ces trois modèles, tels que les dépendances asymptotiques des extrêmes dans la queue gauche, et leurs performances. Un bref compte‐rendu des propriétés de ces modèles est également inclus. Le présent travail accompagne et complète les articles de Demarta et McNeil (2005) et de Finlay et Seneta (2008) parus dans la même revue.

Suggested Citation

  • Thomas Fung & Eugene Seneta, 2010. "Modelling and Estimation for Bivariate Financial Returns," International Statistical Review, International Statistical Institute, vol. 78(1), pages 117-133, April.
  • Handle: RePEc:bla:istatr:v:78:y:2010:i:1:p:117-133
    DOI: 10.1111/j.1751-5823.2010.00106.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.2010.00106.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.2010.00106.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard Finlay & Eugene Seneta, 2008. "Stationary‐Increment Variance‐Gamma and t Models: Simulation and Parameter Estimation," International Statistical Review, International Statistical Institute, vol. 76(2), pages 167-186, August.
    2. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 275-309.
    3. Fung, Thomas & Seneta, Eugene, 2010. "Tail dependence for two skew t distributions," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 784-791, May.
    4. Elisa Luciano & Wim Schoutens, 2006. "A multivariate jump-driven financial asset model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 385-402.
    5. Ines Fortin & Christoph Kuzmics, 2002. "Tail‐dependence in stock‐return pairs," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 11(2), pages 89-107, April.
    6. Thomas Fung & Eugene Seneta, 2010. "Tail dependence and skew distributions," Quantitative Finance, Taylor & Francis Journals, vol. 11(3), pages 327-333.
    7. Rafael Schmidt, 2002. "Tail dependence for elliptically contoured distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 55(2), pages 301-327, May.
    8. Banachewicz, Konrad & van der Vaart, Aad, 2008. "Tail dependence of skewed grouped t-distributions," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2388-2399, October.
    9. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    10. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    11. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qingzhao & Li, Deyuan & Wang, Hansheng, 2013. "A note on tail dependence regression," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 163-172.
    2. Boris Buchmann & Benjamin Kaehler & Ross Maller & Alexander Szimayer, 2015. "Multivariate Subordination using Generalised Gamma Convolutions with Applications to V.G. Processes and Option Pricing," Papers 1502.03901, arXiv.org, revised Oct 2016.
    3. Fung, Thomas & Wang, Joanna J.J. & Seneta, Eugene, 2013. "Contaminated Variance–Mean mixing model," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 258-267.
    4. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    5. Roman V. Ivanov, 2023. "On the Stochastic Volatility in the Generalized Black-Scholes-Merton Model," Risks, MDPI, vol. 11(6), pages 1-23, June.
    6. Vilca, Filidor & Balakrishnan, N. & Zeller, Camila Borelli, 2014. "Multivariate Skew-Normal Generalized Hyperbolic distribution and its properties," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 73-85.
    7. Fung, Thomas & Seneta, Eugene, 2011. "The bivariate normal copula function is regularly varying," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1670-1676, November.
    8. Liseo, Brunero & Parisi, Antonio, 2013. "Bayesian inference for the multivariate skew-normal model: A population Monte Carlo approach," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 125-138.
    9. Boris Buchmann & Kevin W. Lu & Dilip B. Madan, 2018. "Calibration for Weak Variance-Alpha-Gamma Processes," Papers 1801.08852, arXiv.org, revised Jul 2018.
    10. Thomas Fung & Eugene Seneta, 2023. "On Familywise Error Rate Cutoffs under Pairwise Exchangeability," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-13, June.
    11. Gardes, Laurent & Girard, Stéphane, 2015. "Nonparametric estimation of the conditional tail copula," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 1-16.
    12. Thomas Fung & Joanna J.J. Wang & Eugene Seneta, 2014. "The Deviance Information Criterion in Comparison of Normal Mixing Models," International Statistical Review, International Statistical Institute, vol. 82(3), pages 411-421, December.
    13. Olcay Arslan, 2015. "Variance-mean mixture of the multivariate skew normal distribution," Statistical Papers, Springer, vol. 56(2), pages 353-378, May.
    14. Boris Buchmann & Kevin W. Lu & Dilip B. Madan, 2019. "Calibration for Weak Variance-Alpha-Gamma Processes," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1151-1164, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joe, Harry & Li, Haijun, 2019. "Tail densities of skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 421-435.
    2. Fung, Thomas & Seneta, Eugene, 2010. "Tail dependence for two skew t distributions," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 784-791, May.
    3. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Fung, Thomas & Seneta, Eugene, 2011. "The bivariate normal copula function is regularly varying," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1670-1676, November.
    5. Vilca, Filidor & Balakrishnan, N. & Zeller, Camila Borelli, 2014. "Multivariate Skew-Normal Generalized Hyperbolic distribution and its properties," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 73-85.
    6. Jondeau, Eric, 2016. "Asymmetry in tail dependence in equity portfolios," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 351-368.
    7. Fung, Thomas & Seneta, Eugene, 2014. "Convergence rate to a lower tail dependence coefficient of a skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 62-72.
    8. Joe, Harry & Sang, Peijun, 2016. "Multivariate models for dependent clusters of variables with conditional independence given aggregation variables," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 114-132.
    9. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    10. Fung, Thomas & Seneta, Eugene, 2016. "Tail asymptotics for the bivariate skew normal," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 129-138.
    11. Thomas Fung & Joanna J.J. Wang & Eugene Seneta, 2014. "The Deviance Information Criterion in Comparison of Normal Mixing Models," International Statistical Review, International Statistical Institute, vol. 82(3), pages 411-421, December.
    12. Thanakorn Nitithumbundit & Jennifer S. K. Chan, 2020. "ECM Algorithm for Auto-Regressive Multivariate Skewed Variance Gamma Model with Unbounded Density," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1169-1191, September.
    13. Olcay Arslan, 2015. "Variance-mean mixture of the multivariate skew normal distribution," Statistical Papers, Springer, vol. 56(2), pages 353-378, May.
    14. Tsung-I Lin & Pal Wu & Geoffrey McLachlan & Sharon Lee, 2015. "A robust factor analysis model using the restricted skew- $$t$$ t distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 510-531, September.
    15. Roberto Marfè, 2012. "A generalized variance gamma process for financial applications," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 75-87, June.
    16. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    17. Lynn Boen & Florence Guillaume, 2020. "Towards a $$\Delta $$Δ-Gamma Sato multivariate model," Review of Derivatives Research, Springer, vol. 23(1), pages 1-39, April.
    18. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    19. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    20. M. Teimourian & T. Baghfalaki & M. Ganjali & D. Berridge, 2015. "Joint modeling of mixed skewed continuous and ordinal longitudinal responses: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2233-2256, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:78:y:2010:i:1:p:117-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.