IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v414y2019ics0304380019303151.html
   My bibliography  Save this article

Identifying the spatio-temporal risk variability of avian influenza A H7N9 in China

Author

Listed:
  • Zhang, Ping
  • Wang, Jianwen
  • Atkinson, Peter M.

Abstract

The outbreak of H7N9 epidemic in human has seasonal changes. However, up to now there is no research on the spatial-temporal variation characteristics of the relative risk of human H7N9 infection, and the covariate combination that has a greater impact on the relative risk of human H7N9 infection in different seasons. This study used China as the study area to predict the seasonal relative risk of human H7N9 infection through a Bayesian hierarchical conditional autoregressive model (BHCAR), which including five covariates (population density, number of live poultry markets, average precipitation, average temperature, and average relative humidity), seasonal random effects, and spatial random effects. Moreover, the sensitivity of the Bayesian hierarchical model (BH) to predict the seasonal relative risk of human H7N9 infection by changing the parameter settings of the BH prior distribution was analyzed. It was found that the relative risk of human H7N9 infection in spring and winter had spatial random effects, but not in summer and autumn. In spring, autumn and winter, the combination of population density and the number of live poultry markets had a significant influence on the relative risk of human H7N9 infection. In summer, however, the relative risk of human H7N9 infection was largely affected by population density, the number of live poultry markets, average precipitation and average temperature. Further, the standard deviation of the normal distribution to which the covariate coefficient in the BH was subject seemed to have an influence on the prediction and fitting effect of the seasonal relative risk of human infection with H7N9.

Suggested Citation

  • Zhang, Ping & Wang, Jianwen & Atkinson, Peter M., 2019. "Identifying the spatio-temporal risk variability of avian influenza A H7N9 in China," Ecological Modelling, Elsevier, vol. 414(C).
  • Handle: RePEc:eee:ecomod:v:414:y:2019:i:c:s0304380019303151
    DOI: 10.1016/j.ecolmodel.2019.108807
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019303151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.108807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lili Zhuang & Noel Cressie, 2014. "Bayesian hierarchical statistical SIRS models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(4), pages 601-646, November.
    2. Thomas Fung & Joanna J.J. Wang & Eugene Seneta, 2014. "The Deviance Information Criterion in Comparison of Normal Mixing Models," International Statistical Review, International Statistical Institute, vol. 82(3), pages 411-421, December.
    3. Steffen Unkel & C. Paddy Farrington & Paul H. Garthwaite & Chris Robertson & Nick Andrews, 2012. "Statistical methods for the prospective detection of infectious disease outbreaks: a review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(1), pages 49-82, January.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongzhu Xiong & Yunpeng Wang & Feng Chen & Mingyong Zhu, 2020. "Spatial Statistics and Influencing Factors of the COVID-19 Epidemic at Both Prefecture and County Levels in Hubei Province, China," IJERPH, MDPI, vol. 17(11), pages 1-26, May.
    2. Xu Zhao & Hengxing Xiang & Feifei Zhao, 2023. "Measurement and Spatial Differentiation of Farmers’ Livelihood Resilience Under the COVID-19 Epidemic Outbreak in Rural China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 166(2), pages 239-267, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    2. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    3. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    4. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    5. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    6. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    7. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    8. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    9. Doyo G Enki & Paul H Garthwaite & C Paddy Farrington & Angela Noufaily & Nick J Andrews & Andre Charlett, 2016. "Comparison of Statistical Algorithms for the Detection of Infectious Disease Outbreaks in Large Multiple Surveillance Systems," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-25, August.
    10. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    11. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    12. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    13. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.
    14. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
    15. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    16. Simon Mak & Derek Bingham & Yi Lu, 2016. "A regional compound Poisson process for hurricane and tropical storm damage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 677-703, November.
    17. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    18. Huang, Zhaodong & Chien, Steven & Zhu, Wei & Zheng, Pengjun, 2022. "Scheduling wheel inspection for sustainable urban rail transit operation: A Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    19. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.
    20. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:414:y:2019:i:c:s0304380019303151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.