Bayesian Model Selection for Longitudinal Count Data
Author
Abstract
Suggested Citation
DOI: 10.1007/s13571-021-00268-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chan, Joshua C.C. & Grant, Angelia L., 2016.
"Fast computation of the deviance information criterion for latent variable models,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 847-859.
- Joshua C.C. Chan & Angelia L. Grant, 2014. "Fast Computation of the Deviance Information Criterion for Latent Variable Models," CAMA Working Papers 2014-09, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Russell B. Millar, 2009. "Comparison of Hierarchical Bayesian Models for Overdispersed Count Data using DIC and Bayes' Factors," Biometrics, The International Biometric Society, vol. 65(3), pages 962-969, September.
- Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
- N. E. Breslow, 1984. "Extra‐Poisson Variation in Log‐Linear Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(1), pages 38-44, March.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
- Joshua C. C. Chan & Angelia L. Grant, 2016. "On the Observed-Data Deviance Information Criterion for Volatility Modeling," Journal of Financial Econometrics, Oxford University Press, vol. 14(4), pages 772-802.
- Oludare Ariyo & Adrian Quintero & Johanna Muñoz & Geert Verbeke & Emmanuel Lesaffre, 2020. "Bayesian model selection in linear mixed models for longitudinal data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(5), pages 890-913, April.
- Aregay, Mehreteab & Shkedy, Ziv & Molenberghs, Geert, 2013. "A hierarchical Bayesian approach for the analysis of longitudinal count data with overdispersion: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 233-245.
- Yong Li & Zeng Tao & Jun Yu, "undated".
"Robust Deviance Information Criterion for Latent Variable Models,"
Working Papers
CoFie-04-2012, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Yong Li & Tao Zeng & Jun Yu, 2012. "Robust Deviance Information Criterion for Latent Variable Models," Working Papers 30-2012, Singapore Management University, School of Economics.
- Koehler, Elizabeth & Brown, Elizabeth & Haneuse, Sebastien J.-P. A., 2009. "On the Assessment of Monte Carlo Error in Simulation-Based Statistical Analyses," The American Statistician, American Statistical Association, vol. 63(2), pages 155-162.
- Hinde, John & Demetrio, Clarice G. B., 1998. "Overdispersion: Models and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 27(2), pages 151-170, April.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Linde, 2014. "The deviance information criterion: 12 years on," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 485-493, June.
- Florin Vaida & Suzette Blanchard, 2005. "Conditional Akaike information for mixed-effects models," Biometrika, Biometrika Trust, vol. 92(2), pages 351-370, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Integrated Deviance Information Criterion for Latent Variable Models," Economics and Statistics Working Papers 6-2018, Singapore Management University, School of Economics.
- Li, Yong & Yu, Jun & Zeng, Tao, 2020. "Deviance information criterion for latent variable models and misspecified models," Journal of Econometrics, Elsevier, vol. 216(2), pages 450-493.
- Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Ye Yang & Osman Doğan & Süleyman Taşpınar, 2023. "Observed-data DIC for spatial panel data models," Empirical Economics, Springer, vol. 64(3), pages 1281-1314, March.
- Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong & Zhuang, Xin-Tian, 2018. "Modeling volatility dynamics using non-Gaussian stochastic volatility model based on band matrix routine," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 193-201.
- Mabel Morales-Otero & Vicente Núñez-Antón, 2021. "Comparing Bayesian Spatial Conditional Overdispersion and the Besag–York–Mollié Models: Application to Infant Mortality Rates," Mathematics, MDPI, vol. 9(3), pages 1-33, January.
- Arnab Kumar Maity & Sanjib Basu & Santu Ghosh, 2021. "Bayesian criterion‐based variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 835-857, August.
- Joshua C. C. Chan & Eric Eisenstat, 2018.
"Bayesian model comparison for time‐varying parameter VARs with stochastic volatility,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 509-532, June.
- Joshua C.C. Chan & Eric Eisenstat, 2015. "Bayesian model comparison for time-varying parameter VARs with stochastic volatility," CAMA Working Papers 2015-32, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Oludare Ariyo & Emmanuel Lesaffre & Geert Verbeke & Martijn Huisman & Martijn Heymans & Jos Twisk, 2022. "Bayesian model selection for multilevel mediation models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(2), pages 219-235, May.
- Iraj Kazemi & Fatemeh Hassanzadeh, 2021. "Marginalized random-effects models for clustered binomial data through innovative link functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 197-228, June.
- Dimitris Korobilis & Kenichi Shimizu, 2022.
"Bayesian Approaches to Shrinkage and Sparse Estimation,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Paper series 22-02, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
- Bresson Georges & Chaturvedi Anoop & Rahman Mohammad Arshad & Shalabh, 2021.
"Seemingly unrelated regression with measurement error: estimation via Markov Chain Monte Carlo and mean field variational Bayes approximation,"
The International Journal of Biostatistics, De Gruyter, vol. 17(1), pages 75-97, May.
- Georges Bresson & Anoop Chaturvedi & Mohammad Arshad Rahman & Shalabh, 2020. "Seemingly Unrelated Regression with Measurement Error: Estimation via Markov chain Monte Carlo and Mean Field Variational Bayes Approximation," Papers 2006.07074, arXiv.org.
- R. B. Millar & S. McKechnie, 2014. "A one-step-ahead pseudo-DIC for comparison of Bayesian state-space models," Biometrics, The International Biometric Society, vol. 70(4), pages 972-980, December.
- Chan, Joshua C.C. & Grant, Angelia L., 2016.
"Fast computation of the deviance information criterion for latent variable models,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 847-859.
- Joshua C.C. Chan & Angelia L. Grant, 2014. "Fast Computation of the Deviance Information Criterion for Latent Variable Models," CAMA Working Papers 2014-09, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2016.
"Large Bayesian VARMAs,"
Journal of Econometrics, Elsevier, vol. 192(2), pages 374-390.
- Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2014. "Large Bayesian VARMAs," SIRE Discussion Papers 2015-06, Scottish Institute for Research in Economics (SIRE).
- Joshua Chan & Eric Eisenstat & Gary Koop, 2015. "Large Bayesian VARMAs," Working Paper series 15-36, Rimini Centre for Economic Analysis.
- Joshua C C Chan & Eric Eisenstat & Gary Koop, 2014. "Large Bayesian VARMAs," Working Papers 1409, University of Strathclyde Business School, Department of Economics.
- Joshua C.C. Chan & Eric Eisenstat & Gary Koop, 2014. "Large Bayesian VARMAs," Working Paper series 40_14, Rimini Centre for Economic Analysis.
- Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
- Chen, Liyuan & Zerilli, Paola & Baum, Christopher F., 2019.
"Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications,"
Energy Economics, Elsevier, vol. 79(C), pages 111-129.
- Liyuan Chen & Paola Zerilli & Christopher F Baum, 2018. "Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications," Boston College Working Papers in Economics 953, Boston College Department of Economics.
- Jeonghwan Kim & Woojoo Lee, 2019. "On testing the hidden heterogeneity in negative binomial regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(4), pages 457-470, May.
- Daniela Silva & Raquel Menezes & Ana Moreno & Ana Teles-Machado & Susana Garrido, 2024. "Environmental Effects on the Spatiotemporal Variability of Sardine Distribution Along the Portuguese Continental Coast," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 553-575, September.
- David Jiménez-Hernández & Víctor González-Calatayud & Ana Torres-Soto & Asunción Martínez Mayoral & Javier Morales, 2020. "Digital Competence of Future Secondary School Teachers: Differences According to Gender, Age, and Branch of Knowledge," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
More about this item
Keywords
Replication sampling; Marginal likelihood; Bayesian model selection.;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:84:y:2022:i:2:d:10.1007_s13571-021-00268-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.