IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v167y2022ics0167947321002012.html
   My bibliography  Save this article

A study of longitudinal trends in time-frequency transformations of EEG data during a learning experiment

Author

Listed:
  • Boland, Joanna
  • Telesca, Donatello
  • Sugar, Catherine
  • Jeste, Shafali
  • Goldbeck, Cameron
  • Senturk, Damla

Abstract

EEG experiments yield high-dimensional event-related potential (ERP) data in response to repeatedly presented stimuli throughout the experiment. Changes in the high-dimensional ERP signal throughout the duration of an experiment (longitudinally) is the main quantity of interest in learning paradigms, where they represent the learning dynamics. Typical analysis, which can be performed in the time or the frequency domain, average the ERP waveform across all trials, leading to the loss of the potentially valuable longitudinal information in the data. Longitudinal time-frequency transformation of ERP (LTFT-ERP) is proposed to retain information from both the time and frequency domains, offering distinct but complementary information on the underlying cognitive processes evoked, while still retaining the longitudinal dynamics in the ERP waveforms. LTFT-ERP begins by time-frequency transformations of the ERP data, collected across subjects, electrodes, conditions and trials throughout the duration of the experiment, followed by a data driven multidimensional principal components analysis (PCA) approach for dimension reduction. Following projection of the data onto leading directions of variation in the time and frequency domains, longitudinal learning dynamics are modeled within a mixed effects modeling framework. Applications to a learning paradigm in autism depict distinct learning patterns throughout the experiment among children diagnosed with Autism Spectrum Disorder and their typically developing peers. LTFT-ERP time-frequency joint transformations are shown to bring an additional level of specificity to interpretations of the longitudinal learning patterns related to underlying cognitive processes, which is lacking in single domain analysis (in the time or the frequency domain only). Simulation studies show the efficacy of the proposed methodology.

Suggested Citation

  • Boland, Joanna & Telesca, Donatello & Sugar, Catherine & Jeste, Shafali & Goldbeck, Cameron & Senturk, Damla, 2022. "A study of longitudinal trends in time-frequency transformations of EEG data during a learning experiment," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:csdana:v:167:y:2022:i:c:s0167947321002012
    DOI: 10.1016/j.csda.2021.107367
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321002012
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107367?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kehui Chen & Hans-Georg Müller, 2012. "Modeling Repeated Functional Observations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1599-1609, December.
    2. Mark Fiecas & Hernando Ombao, 2016. "Modeling the Evolution of Dynamic Brain Processes During an Associative Learning Experiment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1440-1453, October.
    3. Giovanni Motta & Hernando Ombao, 2012. "Evolutionary Factor Analysis of Replicated Time Series," Biometrics, The International Biometric Society, vol. 68(3), pages 825-836, September.
    4. Minggao Shi & Robert E. Weiss & Jeremy M. G. Taylor, 1996. "An Analysis of Paediatric Cd4 Counts for Acquired Immune Deficiency Syndrome Using Flexible Random Curves," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(2), pages 151-163, June.
    5. Robert T. Krafty & Martica Hall & Wensheng Guo, 2011. "Functional mixed effects spectral analysis," Biometrika, Biometrika Trust, vol. 98(3), pages 583-598.
    6. repec:bla:biomet:v:71:y:2015:i:4:p:1090-1100 is not listed on IDEAS
    7. Ombao, Hernando & Ringo Ho, Moon-ho, 2006. "Time-dependent frequency domain principal components analysis of multichannel non-stationary signals," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2339-2360, May.
    8. John A. Rice & Colin O. Wu, 2001. "Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves," Biometrics, The International Biometric Society, vol. 57(1), pages 253-259, March.
    9. Robert T. Krafty & Ori Rosen & David S. Stoffer & Daniel J. Buysse & Martica H. Hall, 2017. "Conditional Spectral Analysis of Replicated Multiple Time Series With Application to Nocturnal Physiology," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1405-1416, October.
    10. Kehui Chen & Pedro Delicado & Hans-Georg Müller, 2017. "Modelling function-valued stochastic processes, with applications to fertility dynamics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 177-196, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian Hart & Michele Guindani & Stephen Malone & Mark Fiecas, 2022. "A nonparametric Bayesian model for estimating spectral densities of resting‐state EEG twin data," Biometrics, The International Biometric Society, vol. 78(1), pages 313-323, March.
    2. Zhang, Shibin, 2020. "Nonparametric Bayesian inference for the spectral density based on irregularly spaced data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    3. Chau, Joris & von Sachs, Rainer, 2022. "Time-varying spectral matrix estimation via intrinsic wavelet regression for surfaces of Hermitian positive definite matrices," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    4. Chen, Ziqi & Hu, Jianhua & Zhu, Hongtu, 2020. "Surface functional models," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    5. Park, Yeonjoo & Simpson, Douglas G., 2019. "Robust probabilistic classification applicable to irregularly sampled functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 37-49.
    6. Scott A. Bruce & Martica H. Hall & Daniel J. Buysse & Robert T. Krafty, 2018. "Conditional adaptive Bayesian spectral analysis of nonstationary biomedical time series," Biometrics, The International Biometric Society, vol. 74(1), pages 260-269, March.
    7. Sundararajan, Raanju R., 2021. "Principal component analysis using frequency components of multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    8. Justin Petrovich & Matthew Reimherr & Carrie Daymont, 2022. "Highly irregular functional generalized linear regression with electronic health records," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 806-833, August.
    9. Davide Pigoli & Pantelis Z. Hadjipantelis & John S. Coleman & John A. D. Aston, 2018. "The statistical analysis of acoustic phonetic data: exploring differences between spoken Romance languages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1103-1145, November.
    10. Chau, Van Vinh & von Sachs, Rainer, 2018. "Intrinsic wavelet regression for surfaces of Hermitian positive definite matrices," LIDAM Discussion Papers ISBA 2018025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Mingfei Dong & Donatello Telesca & Catherine Sugar & Frederick Shic & Adam Naples & Scott P. Johnson & Beibin Li & Adham Atyabi & Minhang Xie & Sara J. Webb & Shafali Jeste & Susan Faja & April R. Lev, 2023. "A Functional Model for Studying Common Trends Across Trial Time in Eye Tracking Experiments," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 261-287, April.
    12. Yakun Wang & Zeda Li & Scott A. Bruce, 2023. "Adaptive Bayesian sum of trees model for covariate‐dependent spectral analysis," Biometrics, The International Biometric Society, vol. 79(3), pages 1826-1839, September.
    13. Alexander S. Long & Brian J. Reich & Ana‐Maria Staicu & John Meitzen, 2023. "A nonparametric test of group distributional differences for hierarchically clustered functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3778-3791, December.
    14. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Ming Xiong & Ao Yuan & Hong-Bin Fang & Colin O. Wu & Ming T. Tan, 2022. "Estimation and Hypothesis Test for Mean Curve with Functional Data by Reproducing Kernel Hilbert Space Methods, with Applications in Biostatistics," Mathematics, MDPI, vol. 10(23), pages 1-17, December.
    16. Mengfei Ran & Yihe Yang, 2022. "Optimal Estimation of Large Functional and Longitudinal Data by Using Functional Linear Mixed Model," Mathematics, MDPI, vol. 10(22), pages 1-28, November.
    17. Chau, Van Vinh & von Sachs, Rainer, 2016. "Functional mixed effects wavelet estimation for spectra of replicated time series," LIDAM Discussion Papers ISBA 2016013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Charles Fontaine & Ron D. Frostig & Hernando Ombao, 2020. "Modeling dependence via copula of functionals of Fourier coefficients," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 1125-1144, December.
    19. Giovanni Motta & Hernando Ombao, 2012. "Evolutionary Factor Analysis of Replicated Time Series," Biometrics, The International Biometric Society, vol. 68(3), pages 825-836, September.
    20. Amira Elayouty & Marian Scott & Claire Miller, 2022. "Time-Varying Functional Principal Components for Non-Stationary EpCO $$_2$$ 2 in Freshwater Systems," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 506-522, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:167:y:2022:i:c:s0167947321002012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.