Fast Bayesian inference on spectral analysis of multivariate stationary time series
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2022.107596
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
- Rosen, Ori & Stoffer, David S. & Wood, Sally, 2009. "Local Spectral Analysis via a Bayesian Mixture of Smoothing Splines," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 249-262.
- Ori Rosen & David S. Stoffer, 2007. "Automatic estimation of multivariate spectra via smoothing splines," Biometrika, Biometrika Trust, vol. 94(2), pages 335-345.
- Florian Huber & Gary Koop & Luca Onorante, 2021.
"Inducing Sparsity and Shrinkage in Time-Varying Parameter Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 669-683, July.
- Huber, Florian & Koop, Gary & Onorante, Luca, 2019. "Inducing Sparsity and Shrinkage in Time-Varying Parameter Models," Working Papers in Economics 2019-2, University of Salzburg.
- Florian Huber & Gary Koop & Luca Onorante, 2019. "Inducing Sparsity and Shrinkage in Time-Varying Parameter Models," Papers 1905.10787, arXiv.org, revised Dec 2019.
- Huber, Florian & Koop, Gary & Onorante, Luca, 2019. "Inducing sparsity and shrinkage in time-varying parameter models," Working Paper Series 2325, European Central Bank.
- García, Irene & Huo, Stella & Prado, Raquel & Bravo, Lelys, 2020. "Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements," Renewable Energy, Elsevier, vol. 161(C), pages 55-64.
- Meier, Alexander & Kirch, Claudia & Meyer, Renate, 2020. "Bayesian nonparametric analysis of multivariate time series: A matrix Gamma Process approach," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
- Zhang, Shibin, 2016. "Adaptive spectral estimation for nonstationary multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 330-349.
- Florian Huber & Martin Feldkircher, 2019.
"Adaptive Shrinkage in Bayesian Vector Autoregressive Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 27-39, January.
- Florian Huber & Martin Feldkircher, 2016. "Adaptive shrinkage in Bayesian vector autoregressive models," Department of Economics Working Papers wuwp221, Vienna University of Economics and Business, Department of Economics.
- Feldkircher, Martin & Huber, Florian, 2016. "Adaptive Shrinkage in Bayesian Vector Autoregressive Models," Department of Economics Working Paper Series 221, WU Vienna University of Economics and Business.
- Robert T. Krafty & Ori Rosen & David S. Stoffer & Daniel J. Buysse & Martica H. Hall, 2017. "Conditional Spectral Analysis of Replicated Multiple Time Series With Application to Nocturnal Physiology," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1405-1416, October.
- Nidhan Choudhuri & Subhashis Ghosal & Anindya Roy, 2004. "Bayesian Estimation of the Spectral Density of a Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1050-1059, December.
- Ming Dai, 2004. "Multivariate spectral analysis using Cholesky decomposition," Biometrika, Biometrika Trust, vol. 91(3), pages 629-643, September.
- Robert T. Krafty & William O. Collinge, 2013. "Penalized multivariate Whittle likelihood for power spectrum estimation," Biometrika, Biometrika Trust, vol. 100(2), pages 447-458.
- Ori Rosen & Sally Wood & David S. Stoffer, 2012. "AdaptSPEC: Adaptive Spectral Estimation for Nonstationary Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1575-1589, December.
- Zhang, Shibin, 2019. "Bayesian copula spectral analysis for stationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 166-179.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mario Eduardo Carbonó dela Rosa & Graciela Velasco Herrera & Rocío Nava & Enrique Quiroga González & Rodolfo Sosa Echeverría & Pablo Sánchez Álvarez & Jaime Gandarilla Ibarra & Víctor Manuel Velasco H, 2023. "A New Methodology for Early Detection of Failures in Lithium-Ion Batteries," Energies, MDPI, vol. 16(3), pages 1-18, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shibin Zhang, 2022. "Automatic estimation of spatial spectra via smoothing splines," Computational Statistics, Springer, vol. 37(2), pages 565-590, April.
- Zhang, Shibin, 2020. "Nonparametric Bayesian inference for the spectral density based on irregularly spaced data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
- Zhang, Shibin, 2019. "Bayesian copula spectral analysis for stationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 166-179.
- von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Robert T. Krafty & Ori Rosen & David S. Stoffer & Daniel J. Buysse & Martica H. Hall, 2017. "Conditional Spectral Analysis of Replicated Multiple Time Series With Application to Nocturnal Physiology," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1405-1416, October.
- Zhang, Shibin, 2016. "Adaptive spectral estimation for nonstationary multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 330-349.
- Meier, Alexander & Kirch, Claudia & Meyer, Renate, 2020. "Bayesian nonparametric analysis of multivariate time series: A matrix Gamma Process approach," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Chau, Van Vinh & von Sachs, Rainer, 2017. "Positive-Definite Multivariate Spectral Estimation: A Geometric Wavelet Approach," LIDAM Discussion Papers ISBA 2017002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Christian Macaro & Raquel Prado, 2014. "Spectral Decompositions of Multiple Time Series: A Bayesian Non-parametric Approach," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 105-129, January.
- Granados-Garcia, Guilllermo & Fiecas, Mark & Babak, Shahbaba & Fortin, Norbert J. & Ombao, Hernando, 2022. "Brain waves analysis via a non-parametric Bayesian mixture of autoregressive kernels," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Brian Hart & Michele Guindani & Stephen Malone & Mark Fiecas, 2022. "A nonparametric Bayesian model for estimating spectral densities of resting‐state EEG twin data," Biometrics, The International Biometric Society, vol. 78(1), pages 313-323, March.
- Florian Huber & Luca Rossini, 2020. "Inference in Bayesian Additive Vector Autoregressive Tree Models," Papers 2006.16333, arXiv.org, revised Mar 2021.
- Jan Prüser & Florian Huber, 2024.
"Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
- Jan Pruser & Florian Huber, 2023. "Nonlinearities in Macroeconomic Tail Risk through the Lens of Big Data Quantile Regressions," Papers 2301.13604, arXiv.org, revised Sep 2023.
- Tommaso Proietti & Alessandra Luati, 2013.
"The Exponential Model for the Spectrum of a Time Series: Extensions and Applications,"
CEIS Research Paper
272, Tor Vergata University, CEIS, revised 19 Apr 2013.
- Proietti, Tommaso & Luati, Alessandra, 2013. "The Exponential Model for the Spectrum of a Time Series: Extensions and Applications," MPRA Paper 45280, University Library of Munich, Germany.
- Tommaso Proietti & Alessandra Luati, 2013. "The Exponential Model for the Spectrum of a Time Series: Extensions and Applications," CREATES Research Papers 2013-34, Department of Economics and Business Economics, Aarhus University.
- Crespo Cuaresma, Jesús & Huber, Florian & Onorante, Luca, 2020. "Fragility and the effect of international uncertainty shocks," Journal of International Money and Finance, Elsevier, vol. 108(C).
- Yakun Wang & Zeda Li & Scott A. Bruce, 2023. "Adaptive Bayesian sum of trees model for covariate‐dependent spectral analysis," Biometrics, The International Biometric Society, vol. 79(3), pages 1826-1839, September.
- Patricio Maturana-Russel & Renate Meyer, 2021. "Bayesian spectral density estimation using P-splines with quantile-based knot placement," Computational Statistics, Springer, vol. 36(3), pages 2055-2077, September.
- Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
More about this item
Keywords
Multivariate time series; Spectral analysis; Stochastic gradient variational Bayes; Global-local shrinkage prior;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:178:y:2023:i:c:s0167947322001761. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.