Conditional Spectral Analysis of Replicated Multiple Time Series With Application to Nocturnal Physiology
Author
Abstract
Suggested Citation
DOI: 10.1080/01621459.2017.1281811
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Crainiceanu, Ciprian M. & Ruppert, David & Wand, Matthew P., 2005. "Bayesian Analysis for Penalized Spline Regression Using WinBUGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i14).
- Sally A. Wood, 2002. "Bayesian mixture of splines for spatially adaptive nonparametric regression," Biometrika, Biometrika Trust, vol. 89(3), pages 513-528, August.
- Rosen, Ori & Stoffer, David S. & Wood, Sally, 2009. "Local Spectral Analysis via a Bayesian Mixture of Smoothing Splines," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 249-262.
- Robert T. Krafty & William O. Collinge, 2013. "Penalized multivariate Whittle likelihood for power spectrum estimation," Biometrika, Biometrika Trust, vol. 100(2), pages 447-458.
- Ori Rosen & David S. Stoffer, 2007. "Automatic estimation of multivariate spectra via smoothing splines," Biometrika, Biometrika Trust, vol. 94(2), pages 335-345.
- Jerome M. Siegel, 2005. "Clues to the functions of mammalian sleep," Nature, Nature, vol. 437(7063), pages 1264-1271, October.
- Paul L. Speckman, 2003. "Fully Bayesian spline smoothing and intrinsic autoregressive priors," Biometrika, Biometrika Trust, vol. 90(2), pages 289-302, June.
- Ming Dai, 2004. "Multivariate spectral analysis using Cholesky decomposition," Biometrika, Biometrika Trust, vol. 91(3), pages 629-643, September.
- Ori Rosen & Sally Wood & David S. Stoffer, 2012. "AdaptSPEC: Adaptive Spectral Estimation for Nonstationary Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1575-1589, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Boland, Joanna & Telesca, Donatello & Sugar, Catherine & Jeste, Shafali & Goldbeck, Cameron & Senturk, Damla, 2022. "A study of longitudinal trends in time-frequency transformations of EEG data during a learning experiment," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
- Shibin Zhang, 2022. "Automatic estimation of spatial spectra via smoothing splines," Computational Statistics, Springer, vol. 37(2), pages 565-590, April.
- Hu, Zhixiong & Prado, Raquel, 2023. "Fast Bayesian inference on spectral analysis of multivariate stationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
- Zhang, Shibin, 2019. "Bayesian copula spectral analysis for stationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 166-179.
- Brian Hart & Michele Guindani & Stephen Malone & Mark Fiecas, 2022. "A nonparametric Bayesian model for estimating spectral densities of resting‐state EEG twin data," Biometrics, The International Biometric Society, vol. 78(1), pages 313-323, March.
- Zhang, Shibin, 2020. "Nonparametric Bayesian inference for the spectral density based on irregularly spaced data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
- Yakun Wang & Zeda Li & Scott A. Bruce, 2023. "Adaptive Bayesian sum of trees model for covariate‐dependent spectral analysis," Biometrics, The International Biometric Society, vol. 79(3), pages 1826-1839, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Shibin, 2016. "Adaptive spectral estimation for nonstationary multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 330-349.
- Hu, Zhixiong & Prado, Raquel, 2023. "Fast Bayesian inference on spectral analysis of multivariate stationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
- von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Zhang, Shibin, 2019. "Bayesian copula spectral analysis for stationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 166-179.
- Shibin Zhang, 2022. "Automatic estimation of spatial spectra via smoothing splines," Computational Statistics, Springer, vol. 37(2), pages 565-590, April.
- Zhang, Shibin, 2020. "Nonparametric Bayesian inference for the spectral density based on irregularly spaced data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
- Chau, Van Vinh & von Sachs, Rainer, 2017. "Positive-Definite Multivariate Spectral Estimation: A Geometric Wavelet Approach," LIDAM Discussion Papers ISBA 2017002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Meier, Alexander & Kirch, Claudia & Meyer, Renate, 2020. "Bayesian nonparametric analysis of multivariate time series: A matrix Gamma Process approach," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
- Proietti, Tommaso & Luati, Alessandra, 2013.
"The Exponential Model for the Spectrum of a Time Series: Extensions and Applications,"
MPRA Paper
45280, University Library of Munich, Germany.
- Tommaso Proietti & Alessandra Luati, 2013. "The Exponential Model for the Spectrum of a Time Series: Extensions and Applications," CREATES Research Papers 2013-34, Department of Economics and Business Economics, Aarhus University.
- Tommaso Proietti & Alessandra Luati, 2013. "The Exponential Model for the Spectrum of a Time Series: Extensions and Applications," CEIS Research Paper 272, Tor Vergata University, CEIS, revised 19 Apr 2013.
- Christian Macaro & Raquel Prado, 2014. "Spectral Decompositions of Multiple Time Series: A Bayesian Non-parametric Approach," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 105-129, January.
- Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
- Ori Rosen & Sally Wood & David S. Stoffer, 2012. "AdaptSPEC: Adaptive Spectral Estimation for Nonstationary Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1575-1589, December.
- Evangelos E. Ioannidis, 2022. "A new non‐parametric cross‐spectrum estimator," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(5), pages 808-827, September.
- Fiecas, Mark & von Sachs, Rainer, 2013. "Data-driven Shrinkage of the Spectral Density Matrix of a High-dimensional Time Series," LIDAM Discussion Papers ISBA 2013044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Granados-Garcia, Guilllermo & Fiecas, Mark & Babak, Shahbaba & Fortin, Norbert J. & Ombao, Hernando, 2022. "Brain waves analysis via a non-parametric Bayesian mixture of autoregressive kernels," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Nick James, 2021. "Evolutionary correlation, regime switching, spectral dynamics and optimal trading strategies for cryptocurrencies and equities," Papers 2112.15321, arXiv.org, revised Mar 2022.
- Alexandre Rodrigues & Peter Diggle & Renato Assuncao, 2010. "Semiparametric approach to point source modelling in epidemiology and criminology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(3), pages 533-542, May.
- Erin E. Gabriel & Michael J. Daniels & M. Elizabeth Halloran, 2016. "Comparing biomarkers as trial level general surrogates," Biometrics, The International Biometric Society, vol. 72(4), pages 1046-1054, December.
- Welham, S.J. & Thompson, R., 2009. "A note on bimodality in the log-likelihood function for penalized spline mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 920-931, February.
- Jing Cao & Chong Z. He & Kimberly M. Suedkamp Wells & Joshua J. Millspaugh & Mark R. Ryan, 2009. "Modeling Age and Nest-Specific Survival Using a Hierarchical Bayesian Approach," Biometrics, The International Biometric Society, vol. 65(4), pages 1052-1062, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:520:p:1405-1416. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.