IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i4p1297-1309.html
   My bibliography  Save this article

A Bayesian multi‐risks survival (MRS) model in the presence of double censorings

Author

Listed:
  • Mário de Castro
  • Ming‐Hui Chen
  • Yuanye Zhang
  • Anthony V. D'Amico

Abstract

Semi‐competing risks data include the time to a nonterminating event and the time to a terminating event, while competing risks data include the time to more than one terminating event. Our work is motivated by a prostate cancer study, which has one nonterminating event and two terminating events with both semi‐competing risks and competing risks present as well as two censoring times. In this paper, we propose a new multi‐risks survival (MRS) model for this type of data. In addition, the proposed MRS model can accommodate noninformative right‐censoring times for nonterminating and terminating events. Properties of the proposed MRS model are examined in detail. Theoretical and empirical results show that the estimates of the cumulative incidence function for a nonterminating event may be biased if the information on a terminating event is ignored. A Markov chain Monte Carlo sampling algorithm is also developed. Our methodology is further assessed using simulations and also an analysis of the real data from a prostate cancer study. As a result, a prostate‐specific antigen velocity greater than 2.0 ng/mL per year and higher biopsy Gleason scores are positively associated with a shorter time to death due to prostate cancer.

Suggested Citation

  • Mário de Castro & Ming‐Hui Chen & Yuanye Zhang & Anthony V. D'Amico, 2020. "A Bayesian multi‐risks survival (MRS) model in the presence of double censorings," Biometrics, The International Biometric Society, vol. 76(4), pages 1297-1309, December.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:4:p:1297-1309
    DOI: 10.1111/biom.13228
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13228
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13228?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Donglin Zeng & Qingxia Chen & Ming-Hui Chen & Joseph G. Ibrahim, 2012. "Estimating treatment effects with treatment switching via semicompeting risks models: an application to a colorectal cancer study," Biometrika, Biometrika Trust, vol. 99(1), pages 167-184.
    2. Tsodikov A.D. & Ibrahim J.G. & Yakovlev A.Y., 2003. "Estimating Cure Rates From Survival Data: An Alternative to Two-Component Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1063-1078, January.
    3. Chen, Ming-Hui & Ibrahim, Joseph G. & Shao, Qi-Man, 2009. "Maximum likelihood inference for the Cox regression model with applications to missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2018-2030, October.
    4. de Wreede, Liesbeth C. & Fiocco, Marta & Putter, Hein, 2011. "mstate: An R Package for the Analysis of Competing Risks and Multi-State Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 38(i07).
    5. A. S. C. Conlon & J. M. G. Taylor & D. J. Sargent, 2015. "Improving efficiency in clinical trials using auxiliary information: Application of a multi-state cure model," Biometrics, The International Biometric Society, vol. 71(2), pages 460-468, June.
    6. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    7. Kyu Ha Lee & Sebastien Haneuse & Deborah Schrag & Francesca Dominici, 2015. "Bayesian semiparametric analysis of semicompeting risks data: investigating hospital readmission after a pancreatic cancer diagnosis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(2), pages 253-273, February.
    8. Mário de Castro & Ming‐Hui Chen & Yuanye Zhang, 2015. "Bayesian path specific frailty models for multi‐state survival data with applications," Biometrics, The International Biometric Society, vol. 71(3), pages 760-771, September.
    9. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mário de Castro & Ming‐Hui Chen & Yuanye Zhang, 2015. "Bayesian path specific frailty models for multi‐state survival data with applications," Biometrics, The International Biometric Society, vol. 71(3), pages 760-771, September.
    2. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
    3. Chapple, Andrew G. & Vannucci, Marina & Thall, Peter F. & Lin, Steven, 2017. "Bayesian variable selection for a semi-competing risks model with three hazard functions," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 170-185.
    4. Min-Je Choi & Do-Hoon Kim, 2020. "Assessment and Management of Small Yellow Croaker ( Larimichthys polyactis ) Stocks in South Korea," Sustainability, MDPI, vol. 12(19), pages 1-17, October.
    5. Vicente G. Cancho & Gladys D. C. Barriga & Gauss M. Cordeiro & Edwin M. M. Ortega & Adriano K. Suzuki, 2021. "Bayesian survival model induced by frailty for lifetime with long‐term survivors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 299-323, August.
    6. Chibuzor Christopher Nnanatu & Glory Atilola & Paul Komba & Lubanzadio Mavatikua & Zhuzhi Moore & Dennis Matanda & Otibho Obianwu & Ngianga-Bakwin Kandala, 2021. "Evaluating changes in the prevalence of female genital mutilation/cutting among 0-14 years old girls in Nigeria using data from multiple surveys: A novel Bayesian hierarchical spatio-temporal model," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-31, February.
    7. Kaan Kuzu & Refik Soyer, 2018. "Bayesian modeling of abandonments in ticket queues," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(6-7), pages 499-521, September.
    8. S. Upadhyay & M. Peshwani, 2008. "Posterior analysis of lognormal regression models using the Gibbs sampler," Statistical Papers, Springer, vol. 49(1), pages 59-85, March.
    9. Ngianga-Bakwin Kandala & Chibuzor Christopher Nnanatu & Glory Atilola & Paul Komba & Lubanzadio Mavatikua & Zhuzhi Moore & Gerry Mackie & Bettina Shell-Duncan, 2019. "A Spatial Analysis of the Prevalence of Female Genital Mutilation/Cutting among 0–14-Year-Old Girls in Kenya," IJERPH, MDPI, vol. 16(21), pages 1-28, October.
    10. Song, J.J. & Ghosh, M. & Miaou, S. & Mallick, B., 2006. "Bayesian multivariate spatial models for roadway traffic crash mapping," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 246-273, January.
    11. Guosheng Yin, 2005. "Bayesian Cure Rate Frailty Models with Application to a Root Canal Therapy Study," Biometrics, The International Biometric Society, vol. 61(2), pages 552-558, June.
    12. Kyu Ha Lee & Virginie Rondeau & Sebastien Haneuse, 2017. "Accelerated failure time models for semi‐competing risks data in the presence of complex censoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1401-1412, December.
    13. Naranjo, L. & Martín, J. & Pérez, C.J., 2014. "Bayesian binary regression with exponential power link," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 464-476.
    14. Guosheng Yin & Joseph G. Ibrahim, 2005. "A General Class of Bayesian Survival Models with Zero and Nonzero Cure Fractions," Biometrics, The International Biometric Society, vol. 61(2), pages 403-412, June.
    15. Andrade, A.R. & Teixeira, P.F., 2015. "Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 169-183.
    16. Brown, Sarah & Ghosh, Pulak & Su, Li & Taylor, Karl, 2015. "Modelling household finances: A Bayesian approach to a multivariate two-part model," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 190-207.
    17. Zhang, Yue & Zhang, Bin, 2018. "Semiparametric spatial model for interval-censored data with time-varying covariate effects," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 146-156.
    18. Roy, Vivekananda, 2014. "Efficient estimation of the link function parameter in a robust Bayesian binary regression model," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 87-102.
    19. Mário Castro & Ming-Hui Chen & Joseph G. Ibrahim & John P. Klein, 2014. "Bayesian Transformation Models for Multivariate Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 187-199, March.
    20. Susanne Gschlößl & Claudia Czado, 2008. "Modelling count data with overdispersion and spatial effects," Statistical Papers, Springer, vol. 49(3), pages 531-552, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:4:p:1297-1309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.