Zero-and-one-inflated Poisson regression model
Author
Abstract
Suggested Citation
DOI: 10.1007/s00362-019-01118-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hai-yan Xu & Min Xie & Thong Ngee Goh, 2014. "Objective Bayes analysis of zero-inflated Poisson distribution with application to healthcare data," IISE Transactions, Taylor & Francis Journals, vol. 46(8), pages 843-852, August.
- Feng-Chang Xie & Jin-Guan Lin & Bo-Cheng Wei, 2014. "Bayesian zero-inflated generalized Poisson regression model: estimation and case influence diagnostics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1383-1392, June.
- Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
- Yincai Tang & Wenchen Liu & Ancha Xu, 2017. "Statistical inference for zero-and-one-inflated poisson models," Statistical Theory and Related Fields, Taylor & Francis Journals, vol. 1(2), pages 216-226, July.
- W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
- Lim, Hwa Kyung & Li, Wai Keung & Yu, Philip L.H., 2014. "Zero-inflated Poisson regression mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 151-158.
- Brian Neelon & Dongjun Chung, 2017. "The LZIP: A Bayesian latent factor model for correlated zero-inflated counts," Biometrics, The International Biometric Society, vol. 73(1), pages 185-196, March.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
- Byoung Cheol Jung & Myoungshic Jhun & Jae Won Lee, 2005. "Bootstrap Tests for Overdispersion in a Zero-Inflated Poisson Regression Model," Biometrics, The International Biometric Society, vol. 61(2), pages 626-628, June.
- Ernst Wit & Edwin van den Heuvel & Jan-Willem Romeijn, 2012. "‘All models are wrong...’: an introduction to model uncertainty," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 217-236, August.
- Martin Ridout & John Hinde & Clarice G. B. Demétrio, 2001. "A Score Test for Testing a Zero‐Inflated Poisson Regression Model Against Zero‐Inflated Negative Binomial Alternatives," Biometrics, The International Biometric Society, vol. 57(1), pages 219-223, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hadi Saboori & Mahdi Doostparast, 2024. "Control Charts Based on Zero to k Inflated Power Series Regression Models and Their Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 442-476, November.
- Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
- Zhou, Can & Jiao, Yan & Browder, Joan, 2019. "K-aggregated transformation of discrete distributions improves modeling count data with excess ones," Ecological Modelling, Elsevier, vol. 407(C), pages 1-1.
- Qihuang Zhang & Grace Y. Yi, 2023. "Zero‐inflated Poisson models with measurement error in the response," Biometrics, The International Biometric Society, vol. 79(2), pages 1089-1102, June.
- Maria Gheorghe & Susan Picavet & Monique Verschuren & Werner B. F. Brouwer & Pieter H. M. Baal, 2017. "Health losses at the end of life: a Bayesian mixed beta regression approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 723-749, June.
- Aldo M. Garay & Victor H. Lachos & Heleno Bolfarine, 2015. "Bayesian estimation and case influence diagnostics for the zero-inflated negative binomial regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1148-1165, June.
- Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
- Feng-Chang Xie & Jin-Guan Lin & Bo-Cheng Wei, 2014. "Bayesian zero-inflated generalized Poisson regression model: estimation and case influence diagnostics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1383-1392, June.
- Zaida C. Quiroz & Marcos O. Prates & Håvard Rue, 2015. "A Bayesian approach to estimate the biomass of anchovies off the coast of Perú," Biometrics, The International Biometric Society, vol. 71(1), pages 208-217, March.
- Chibuzor Christopher Nnanatu & Glory Atilola & Paul Komba & Lubanzadio Mavatikua & Zhuzhi Moore & Dennis Matanda & Otibho Obianwu & Ngianga-Bakwin Kandala, 2021. "Evaluating changes in the prevalence of female genital mutilation/cutting among 0-14 years old girls in Nigeria using data from multiple surveys: A novel Bayesian hierarchical spatio-temporal model," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-31, February.
- S. Upadhyay & M. Peshwani, 2008. "Posterior analysis of lognormal regression models using the Gibbs sampler," Statistical Papers, Springer, vol. 49(1), pages 59-85, March.
- Jussiane Nader Gonçalves & Wagner Barreto-Souza, 2020. "Flexible regression models for counts with high-inflation of zeros," METRON, Springer;Sapienza Università di Roma, vol. 78(1), pages 71-95, April.
- Lim, Hwa Kyung & Song, Juwon & Jung, Byoung Cheol, 2013. "Score tests for zero-inflation and overdispersion in two-level count data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 67-82.
- Wei-Wen Hsu & David Todem & Kyungmann Kim, 2015. "Adjusted Supremum Score-Type Statistics for Evaluating Non-Standard Hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 746-759, September.
- Andrade, A.R. & Teixeira, P.F., 2015. "Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 169-183.
- Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, August.
- Refik Soyer & M. Murat Tarimcilar, 2008. "Modeling and Analysis of Call Center Arrival Data: A Bayesian Approach," Management Science, INFORMS, vol. 54(2), pages 266-278, February.
- Franta, Michal, 2017.
"Rare shocks vs. non-linearities: What drives extreme events in the economy? Some empirical evidence,"
Journal of Economic Dynamics and Control, Elsevier, vol. 75(C), pages 136-157.
- Michal Franta, 2015. "Rare Shocks vs. Non-linearities: What Drives Extreme Events in the Economy? Some Empirical Evidence," Working Papers 2015/04, Czech National Bank.
- Markus Jochmann, 2013.
"What belongs where? Variable selection for zero-inflated count models with an application to the demand for health care,"
Computational Statistics, Springer, vol. 28(5), pages 1947-1964, October.
- Markus Jochmann, 2009. "What Belongs Where? Variable Selection for Zero-Inflated Count Models with an Application to the Demand for Health Care," Working Papers 0923, University of Strathclyde Business School, Department of Economics.
- Markus Jochmann, 2009. "What Belongs Where? Variable Selection for Zero-Inflated Count Models with an Application to the Demand for Health Care," Working Paper series 45_09, Rimini Centre for Economic Analysis.
- Jochmann, Markus, 2009. "What Belongs Where? Variable Selection for Zero-Inflated Count Models with an Application to the Demand for Health Care," SIRE Discussion Papers 2009-54, Scottish Institute for Research in Economics (SIRE).
- Simon Cheng & Yingmei Xi & Ming-Hui Chen, 2008. "A New Mixture Model for Misclassification With Applications for Survey Data," Sociological Methods & Research, , vol. 37(1), pages 75-104, August.
More about this item
Keywords
Zero-and-one-inflated Poisson regression model; Data augmentation; Gibbs sampling; EM algorithm; GEM algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:62:y:2021:i:2:d:10.1007_s00362-019-01118-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.