IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v74y2014icp198-208.html
   My bibliography  Save this article

Bayesian semiparametric model for spatially correlated interval-censored survival data

Author

Listed:
  • Pan, Chun
  • Cai, Bo
  • Wang, Lianming
  • Lin, Xiaoyan

Abstract

Interval-censored survival data are often recorded in medical practice. Although some methods have been developed for analyzing such data, issues still remain in terms of efficiency and accuracy in estimation. In addition, interval-censored data with spatial correlation are not unusual but less studied. In this paper, we propose an efficient Bayesian approach under a proportional hazards frailty model to analyze interval-censored survival data with spatial correlation. Specifically, a linear combination of monotonic splines is used to model the unknown baseline cumulative hazard function, leading to a finite number of parameters to estimate while maintaining adequate modeling flexibility. A conditional autoregressive distribution is employed to model the spatial dependency. A two-step data augmentation through Poisson latent variables is used to facilitate the computation of posterior distributions that are essential in the proposed MCMC algorithm. Simulation studies are conducted to evaluate the performance of the proposed method. The approach is illustrated through geographically referenced smoking cessation data in southeastern Minnesota where time to relapse is modeled and spatial structure is examined.

Suggested Citation

  • Pan, Chun & Cai, Bo & Wang, Lianming & Lin, Xiaoyan, 2014. "Bayesian semiparametric model for spatially correlated interval-censored survival data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 198-208.
  • Handle: RePEc:eee:csdana:v:74:y:2014:i:c:p:198-208
    DOI: 10.1016/j.csda.2013.11.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313004544
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.11.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Vaart, A. W. & Wellner, Jon A., 1992. "Existence and consistency of maximum likelihood in upgraded mixture models," Journal of Multivariate Analysis, Elsevier, vol. 43(1), pages 133-146, October.
    2. Xiaoping Jin & Bradley P. Carlin & Sudipto Banerjee, 2005. "Generalized Hierarchical Multivariate CAR Models for Areal Data," Biometrics, The International Biometric Society, vol. 61(4), pages 950-961, December.
    3. Fay, Michael P. & Shaw, Pamela A., 2010. "Exact and Asymptotic Weighted Logrank Tests for Interval Censored Data: The interval R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i02).
    4. Tianxi Cai & Rebecca A. Betensky, 2003. "Hazard Regression for Interval-Censored Data with Penalized Spline," Biometrics, The International Biometric Society, vol. 59(3), pages 570-579, September.
    5. Sudipto Banerjee & Bradley P. Carlin, 2004. "Parametric Spatial Cure Rate Models for Interval-Censored Time-to-Relapse Data," Biometrics, The International Biometric Society, vol. 60(1), pages 268-275, March.
    6. James S. Hodges & Bradley P. Carlin & Qiao Fan, 2003. "On the Precision of the Conditionally Autoregressive Prior in Spatial Models," Biometrics, The International Biometric Society, vol. 59(2), pages 317-322, June.
    7. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    8. Cetinyurek-Yavuz, Aysun & Lambert, Philippe, 2011. "Smooth estimation of survival functions and hazard ratios from interval-censored data using Bayesian penalized B-splines," LIDAM Reprints ISBA 2011004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. W. R. Gilks & N. G. Best & K. K. C. Tan, 1995. "Adaptive Rejection Metropolis Sampling Within Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(4), pages 455-472, December.
    10. Cai, Bo & Lin, Xiaoyan & Wang, Lianming, 2011. "Bayesian proportional hazards model for current status data with monotone splines," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2644-2651, September.
    11. Lianming Wang & David B. Dunson, 2011. "Semiparametric Bayes' Proportional Odds Models for Current Status Data with Underreporting," Biometrics, The International Biometric Society, vol. 67(3), pages 1111-1118, September.
    12. Ying Zhang & Lei Hua & Jian Huang, 2010. "A Spline‐Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 338-354, June.
    13. Wei Pan, 2000. "A Multiple Imputation Approach to Cox Regression with Interval-Censored Data," Biometrics, The International Biometric Society, vol. 56(1), pages 199-203, March.
    14. Nicola J. Cooper & Alex J. Sutton & Miranda Mugford & Keith R. Abrams, 2003. "Use of Bayesian Markov Chain Monte Carlo Methods to Model Cost-of-Illness Data," Medical Decision Making, , vol. 23(1), pages 38-53, January.
    15. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akim Adekpedjou & Sophie Dabo‐Niang, 2021. "Semiparametric estimation with spatially correlated recurrent events," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1097-1126, December.
    2. Zhang, Yue & Zhang, Bin, 2018. "Semiparametric spatial model for interval-censored data with time-varying covariate effects," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 146-156.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prabhashi W. Withana Gamage & Monica Chaudari & Christopher S. McMahan & Edwin H. Kim & Michael R. Kosorok, 2020. "An extended proportional hazards model for interval-censored data subject to instantaneous failures," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 158-182, January.
    2. Zhang, Yue & Zhang, Bin, 2018. "Semiparametric spatial model for interval-censored data with time-varying covariate effects," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 146-156.
    3. Chunling Wang & Xiaoyan Lin, 2022. "Bayesian Semiparametric Regression Analysis of Multivariate Panel Count Data," Stats, MDPI, vol. 5(2), pages 1-17, May.
    4. Prabhashi W. Withana Gamage & Christopher S. McMahan & Lianming Wang, 2023. "A flexible parametric approach for analyzing arbitrarily censored data that are potentially subject to left truncation under the proportional hazards model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 188-212, January.
    5. Jianhong Wang & Xiaoyan Lin, 2020. "A Bayesian approach for semiparametric regression analysis of panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 402-420, April.
    6. Brian J. Reich & James S. Hodges, 2008. "Modeling Longitudinal Spatial Periodontal Data: A Spatially Adaptive Model with Tools for Specifying Priors and Checking Fit," Biometrics, The International Biometric Society, vol. 64(3), pages 790-799, September.
    7. Audrey Boruvka & Richard J. Cook, 2015. "A Cox-Aalen Model for Interval-censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 414-426, June.
    8. Susanne Gschlößl & Claudia Czado, 2008. "Modelling count data with overdispersion and spatial effects," Statistical Papers, Springer, vol. 49(3), pages 531-552, July.
    9. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
    10. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    11. Chibuzor Christopher Nnanatu & Glory Atilola & Paul Komba & Lubanzadio Mavatikua & Zhuzhi Moore & Dennis Matanda & Otibho Obianwu & Ngianga-Bakwin Kandala, 2021. "Evaluating changes in the prevalence of female genital mutilation/cutting among 0-14 years old girls in Nigeria using data from multiple surveys: A novel Bayesian hierarchical spatio-temporal model," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-31, February.
    12. Marco Gramatica & Peter Congdon & Silvia Liverani, 2021. "Bayesian modelling for spatially misaligned health areal data: A multiple membership approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 645-666, June.
    13. Hazan, Alon & Landsman, Zinoviy & E Makov, Udi, 2003. "Robustness via a mixture of exponential power distributions," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 111-121, February.
    14. S. Upadhyay & M. Peshwani, 2008. "Posterior analysis of lognormal regression models using the Gibbs sampler," Statistical Papers, Springer, vol. 49(1), pages 59-85, March.
    15. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    16. Xiao Li & Michele Guindani & Chaan S. Ng & Brian P. Hobbs, 2021. "A Bayesian nonparametric model for textural pattern heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 459-480, March.
    17. Jelena Nikolić & Danijela Aleksić & Zoran Perić & Milan Dinčić, 2021. "Iterative Algorithm for Parameterization of Two-Region Piecewise Uniform Quantizer for the Laplacian Source," Mathematics, MDPI, vol. 9(23), pages 1-14, November.
    18. Min Zhang & Marie Davidian, 2008. "“Smooth” Semiparametric Regression Analysis for Arbitrarily Censored Time-to-Event Data," Biometrics, The International Biometric Society, vol. 64(2), pages 567-576, June.
    19. Zhiguo Li & Kouros Owzar, 2016. "Fitting Cox Models with Doubly Censored Data Using Spline-Based Sieve Marginal Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 476-486, June.
    20. Meyer, Renate & Cai, Bo & Perron, François, 2008. "Adaptive rejection Metropolis sampling using Lagrange interpolation polynomials of degree 2," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3408-3423, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:74:y:2014:i:c:p:198-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.