IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0246661.html
   My bibliography  Save this article

Evaluating changes in the prevalence of female genital mutilation/cutting among 0-14 years old girls in Nigeria using data from multiple surveys: A novel Bayesian hierarchical spatio-temporal model

Author

Listed:
  • Chibuzor Christopher Nnanatu
  • Glory Atilola
  • Paul Komba
  • Lubanzadio Mavatikua
  • Zhuzhi Moore
  • Dennis Matanda
  • Otibho Obianwu
  • Ngianga-Bakwin Kandala

Abstract

Female genital mutilation/cutting (FGM/C) is considered a public health and human rights concern, mainly concentrated in Africa, and has been targeted for elimination under the sustainable development goals. Interventions aimed at ending the practice often rely on data from household surveys which employ complex designs leading to outcomes that are not totally independent, thus requiring advanced statistical techniques. Combining data from multiple surveys within robust statistical framework holds promise to provide more precise estimates due to increased sample size, and accurately identify ‘hotspots’ and allow for assessment of changes over time. In this study, rich datasets from six (6) successive waves of the Nigeria Demographic and Health Surveys and Multiple Indicator Cluster Surveys undertaken between 2003 and 2016/17, were combined and analyzed in order to better assess changes in the likelihood and prevalence of FGM/C among 0-14-year old girls in Nigeria. We used Bayesian hierarchical regression models which explicitly accounted for the inherent spatial and temporal autocorrelations within the data while simultaneously adjusting for variations due to different survey methods and the effects of linear and non-linear covariates. Parameters were estimated using Markov chain Mote Carlo techniques and model fit assessments were based on Deviance Information Criterion. Results show that prevalence of FGM/C among 0–14 years old girls in Nigeria varied over time and across geographical locations and peaked in 2008 with a shift from South to North. A girl was more likely to be cut if her mother was cut, supported FGM/C continuation, or had no higher education. The effects of mother’s age, wealth and type of residence (urban-rural) were no longer significant in 2016. These results reflect the gains of interventions over the years, but also echo the belief that FGM/C is a social norm thus requiring tailored all-inclusive interventions for the total abandonment of FGM/C in Nigeria.

Suggested Citation

  • Chibuzor Christopher Nnanatu & Glory Atilola & Paul Komba & Lubanzadio Mavatikua & Zhuzhi Moore & Dennis Matanda & Otibho Obianwu & Ngianga-Bakwin Kandala, 2021. "Evaluating changes in the prevalence of female genital mutilation/cutting among 0-14 years old girls in Nigeria using data from multiple surveys: A novel Bayesian hierarchical spatio-temporal model," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-31, February.
  • Handle: RePEc:plo:pone00:0246661
    DOI: 10.1371/journal.pone.0246661
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246661
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0246661&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0246661?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anselin, Luc & Getis, Arthur, 1992. "Spatial Statistical Analysis and Geographic Information Systems," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 26(1), pages 19-33, April.
    2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    3. Umlauf, Nikolaus & Adler, Daniel & Kneib, Thomas & Lang, Stefan & Zeileis, Achim, 2015. "Structured Additive Regression Models: An R Interface to BayesX," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i21).
    4. Duncan Lee & Alastair Rushworth & Sujit K. Sahu, 2014. "A Bayesian localized conditional autoregressive model for estimating the health effects of air pollution," Biometrics, The International Biometric Society, vol. 70(2), pages 419-429, June.
    5. Shell-Duncan, Bettina & Wander, Katherine & Hernlund, Ylva & Moreau, Amadou, 2011. "Dynamics of change in the practice of female genital cutting in Senegambia: Testing predictions of social convention theory," Social Science & Medicine, Elsevier, vol. 73(8), pages 1275-1283.
    6. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    7. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ngianga-Bakwin Kandala & Chibuzor Christopher Nnanatu & Glory Atilola & Paul Komba & Lubanzadio Mavatikua & Zhuzhi Moore & Gerry Mackie & Bettina Shell-Duncan, 2019. "A Spatial Analysis of the Prevalence of Female Genital Mutilation/Cutting among 0–14-Year-Old Girls in Kenya," IJERPH, MDPI, vol. 16(21), pages 1-28, October.
    2. Ngianga-Bakwin Kandala & Chibuzor Christopher Nnanatu & Glory Atilola & Paul Komba & Lubanzadio Mavatikua & Zhuzhi Moore & Dennis Matanda, 2021. "Analysing Normative Influences on the Prevalence of Female Genital Mutilation/Cutting among 0–14 Years Old Girls in Senegal: A Spatial Bayesian Hierarchical Regression Approach," IJERPH, MDPI, vol. 18(7), pages 1-26, April.
    3. Jamie Roberman & Theophilus I. Emeto & Oyelola A. Adegboye, 2021. "Adverse Birth Outcomes Due to Exposure to Household Air Pollution from Unclean Cooking Fuel among Women of Reproductive Age in Nigeria," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
    4. Seiler, Johannes & Harttgen, Kenneth & Kneib, Thomas & Lang, Stefan, 2021. "Modelling children's anthropometric status using Bayesian distributional regression merging socio-economic and remote sensed data from South Asia and sub-Saharan Africa," Economics & Human Biology, Elsevier, vol. 40(C).
    5. Wu, Ji & Guo, Mengmeng & Chen, Minghua & Jeon, Bang Nam, 2019. "Market power and risk-taking of banks: Some semiparametric evidence from emerging economies," Emerging Markets Review, Elsevier, vol. 41(C).
    6. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    7. Jullion, Astrid & Lambert, Philippe, 2007. "Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2542-2558, February.
    8. Min-Je Choi & Do-Hoon Kim, 2020. "Assessment and Management of Small Yellow Croaker ( Larimichthys polyactis ) Stocks in South Korea," Sustainability, MDPI, vol. 12(19), pages 1-17, October.
    9. Rui Martins, 2022. "A flexible link for joint modelling longitudinal and survival data accounting for individual longitudinal heterogeneity," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(1), pages 41-61, March.
    10. Kaan Kuzu & Refik Soyer, 2018. "Bayesian modeling of abandonments in ticket queues," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(6-7), pages 499-521, September.
    11. S. Upadhyay & M. Peshwani, 2008. "Posterior analysis of lognormal regression models using the Gibbs sampler," Statistical Papers, Springer, vol. 49(1), pages 59-85, March.
    12. Samson B. Adebayo & Ezra Gayawan, 2022. "A Bivariate Analysis of the Spatial Distributions of Stunting and Wasting Among Children Under-Five in Nigeria," Journal of Development Policy and Practice, , vol. 7(1), pages 31-52, January.
    13. Song, J.J. & Ghosh, M. & Miaou, S. & Mallick, B., 2006. "Bayesian multivariate spatial models for roadway traffic crash mapping," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 246-273, January.
    14. Scheipl, Fabian & Kneib, Thomas, 2009. "Locally adaptive Bayesian P-splines with a Normal-Exponential-Gamma prior," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3533-3552, August.
    15. Thaden, Hauke & Klein, Nadja & Kneib, Thomas, 2019. "Multivariate effect priors in bivariate semiparametric recursive Gaussian models," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 51-66.
    16. Naranjo, L. & Martín, J. & Pérez, C.J., 2014. "Bayesian binary regression with exponential power link," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 464-476.
    17. Duchwan Ryu & Erning Li & Bani K. Mallick, 2011. "Bayesian Nonparametric Regression Analysis of Data with Random Effects Covariates from Longitudinal Measurements," Biometrics, The International Biometric Society, vol. 67(2), pages 454-466, June.
    18. Andrade, A.R. & Teixeira, P.F., 2015. "Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 169-183.
    19. Brown, Sarah & Ghosh, Pulak & Su, Li & Taylor, Karl, 2015. "Modelling household finances: A Bayesian approach to a multivariate two-part model," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 190-207.
    20. Zhang, Yue & Zhang, Bin, 2018. "Semiparametric spatial model for interval-censored data with time-varying covariate effects," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 146-156.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0246661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.