IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v75y2017icp136-157.html
   My bibliography  Save this article

Rare shocks vs. non-linearities: What drives extreme events in the economy? Some empirical evidence

Author

Listed:
  • Franta, Michal

Abstract

A small-scale vector autoregression (VAR) is used to shed some light on the roles of extreme shocks and non-linearities during stress events observed in the economy. The model focuses on the link between credit/financial markets and the real economy and is estimated on US quarterly data for the period 1984–2013. Extreme shocks are accounted for by assuming t-distributed reduced-form shocks. Non-linearity is allowed by the possibility of regime switch in the shock propagation mechanism. Strong evidence for fat tails in error distributions is found. Moreover, the results suggest that accounting for extreme shocks rather than explicit modeling of non-linearity contributes to the explanatory power of the model. Finally, it is shown that the accuracy of density forecasts improves if non-linearities and shock distributions with fat tails are considered.

Suggested Citation

  • Franta, Michal, 2017. "Rare shocks vs. non-linearities: What drives extreme events in the economy? Some empirical evidence," Journal of Economic Dynamics and Control, Elsevier, vol. 75(C), pages 136-157.
  • Handle: RePEc:eee:dyncon:v:75:y:2017:i:c:p:136-157
    DOI: 10.1016/j.jedc.2016.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188916302081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2016.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Koop, Gary & Potter, Simon M, 2003. "Bayesian Analysis of Endogenous Delay Threshold Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 93-103, January.
    2. Ching-Wai (Jeremy) Chiu & Haroon Mumtaz & Gabor Pinter, 2014. "Fat-tails in VAR Models," Working Papers 714, Queen Mary University of London, School of Economics and Finance.
    3. Bernanke, Ben & Gertler, Mark & Gilchrist, Simon, 1996. "The Financial Accelerator and the Flight to Quality," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 1-15, February.
    4. McCallum, John, 1991. "Credit Rationing and the Monetary Transmission Mechanism," American Economic Review, American Economic Association, vol. 81(4), pages 946-951, September.
    5. Vasco Cúrdia & Marco Del Negro & Daniel L. Greenwald, 2014. "Rare Shocks, Great Recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1031-1052, November.
    6. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    7. Robert B. Litterman, 1979. "Techniques of forecasting using vector autoregressions," Working Papers 115, Federal Reserve Bank of Minneapolis.
    8. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-09 Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 43(1 (Spring), pages 81-156.
    9. Daniel F. Waggoner & Tao Zha, 1999. "Conditional Forecasts In Dynamic Multivariate Models," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 639-651, November.
    10. Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-1154, December.
    11. Hubrich, Kirstin & Tetlow, Robert J., 2015. "Financial stress and economic dynamics: The transmission of crises," Journal of Monetary Economics, Elsevier, vol. 70(C), pages 100-115.
    12. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    13. Tommaso Ferraresi & Andrea Roventini & Giorgio Fagiolo, 2015. "Fiscal Policies and Credit Regimes: A TVAR Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1047-1072, November.
    14. Dobromił Serwa, 2012. "Banking crises and nonlinear linkages between credit and output," Applied Economics, Taylor & Francis Journals, vol. 44(8), pages 1025-1040, March.
    15. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    16. Scott Brave & R. Andrew Butters, 2012. "Diagnosing the Financial System: Financial Conditions and Financial Stress," International Journal of Central Banking, International Journal of Central Banking, vol. 8(2), pages 191-239, June.
    17. Siddhartha Chib & Srikanth Ramamurthy, 2014. "DSGE Models with Student- t Errors," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 152-171, June.
    18. Michal Franta & Jozef Baruník & Roman Horváth & Katerina Smídková, 2014. "Are Bayesian Fan Charts Useful? The Effect of Zero Lower Bound and Evaluation of Financial Stability Stress Tests," International Journal of Central Banking, International Journal of Central Banking, vol. 10(1), pages 159-188, March.
    19. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    20. Nathan S. Balke, 2000. "Credit and Economic Activity: Credit Regimes and Nonlinear Propagation of Shocks," The Review of Economics and Statistics, MIT Press, vol. 82(2), pages 344-349, May.
    21. Ching-Wai (Jeremy) Chiu & Haroon Mumtaz & Gabor Pinter, 2014. "Fat-tails in VAR Models," Working Papers 714, Queen Mary University of London, School of Economics and Finance.
    22. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-09 Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 44(1 (Spring), pages 81-156.
    23. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dave, Chetan & Malik, Samreen, 2017. "A tale of fat tails," European Economic Review, Elsevier, vol. 100(C), pages 293-317.
    2. Chiu, Ching-Wai (Jeremy) & Hacioglu Hoke, Sinem, 2016. "Macroeconomic tail events with non-linear Bayesian VARs," Bank of England working papers 611, Bank of England.
    3. Siddhartha Chib & Minchul Shin & Fei Tan, 2020. "High-Dimensional DSGE Models: Pointers on Prior, Estimation, Comparison, and Prediction∗," Working Papers 20-35, Federal Reserve Bank of Philadelphia.
    4. repec:cnb:ocpubv:rb16/1 is not listed on IDEAS
    5. repec:cnb:ocpubv:rb15/1 is not listed on IDEAS
    6. repec:cnb:ocpubv:rb15/2 is not listed on IDEAS
    7. Siddhartha Chib & Minchul Shin & Fei Tan, 2023. "DSGE-SVt: An Econometric Toolkit for High-Dimensional DSGE Models with SV and t Errors," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 69-111, January.
    8. repec:cnb:ocpubv:rb16/2 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michal Franta, 2016. "The Effect of Nonlinearity between Credit Conditions and Economic Activity on Density Forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 147-166, March.
    2. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    3. Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Financial conditions and density forecasts for US output and inflation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 24, pages 66-78, March.
    4. Renée Fry-Mckibbin & Jasmine Zheng, 2016. "Effects of the US monetary policy shocks during financial crises – a threshold vector autoregression approach," Applied Economics, Taylor & Francis Journals, vol. 48(59), pages 5802-5823, December.
    5. Knut Are Aastveit & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2017. "Have Standard VARS Remained Stable Since the Crisis?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 931-951, August.
    6. Ellington, Michael & Florackis, Chris & Milas, Costas, 2017. "Liquidity shocks and real GDP growth: Evidence from a Bayesian time-varying parameter VAR," Journal of International Money and Finance, Elsevier, vol. 72(C), pages 93-117.
    7. Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024. "Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails," Journal of Econometrics, Elsevier, vol. 238(2).
    8. Piergiorgio Alessandri & Antonio M. Conti & Fabrizio Venditti, 2016. "The Financial Stability Dark Side of Monetary Policy," BCAM Working Papers 1601, Birkbeck Centre for Applied Macroeconomics.
    9. Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Financial conditions and density forecasts for US output and inflation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 24, pages 66-78, March.
    10. Ching-Wai (Jeremy) Chiu & Haroon Mumtaz & Gabor Pinter, 2016. "Bayesian Vector Autoregressions with Non-Gaussian Shocks," CReMFi Discussion Papers 5, CReMFi, School of Economics and Finance, QMUL.
    11. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    12. Ana Beatriz Galvão & Michael T. Owyang, 2018. "Financial Stress Regimes and the Macroeconomy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(7), pages 1479-1505, October.
    13. Herwartz, Helmut & Lange, Alexander & Maxand, Simone, 2019. "Statistical identification in SVARs - Monte Carlo experiments and a comparative assessment of the role of economic uncertainties for the US business cycle," University of Göttingen Working Papers in Economics 375, University of Goettingen, Department of Economics.
    14. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    15. Karlsson, Sune & Mazur, Stepan & Nguyen, Hoang, 2023. "Vector autoregression models with skewness and heavy tails," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    16. Chiu, Ching-Wai (Jeremy) & Mumtaz, Haroon & Pintér, Gábor, 2017. "Forecasting with VAR models: Fat tails and stochastic volatility," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1124-1143.
    17. Bobeica, Elena & Hartwig, Benny, 2023. "The COVID-19 shock and challenges for inflation modelling," International Journal of Forecasting, Elsevier, vol. 39(1), pages 519-539.
    18. Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial indicators and density forecasts for US output and inflation," Temi di discussione (Economic working papers) 977, Bank of Italy, Economic Research and International Relations Area.
    19. Beqiraj, Elton & Patella, Valeria & Tancioni, Massimiliano, 2021. "Fiscal stance and the sovereign risk pass-through," Economic Modelling, Elsevier, vol. 102(C).
    20. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.

    More about this item

    Keywords

    C11; E44; C32; Non-linearity; Fat tails; Bayesian VAR; Density forecasting;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:75:y:2017:i:c:p:136-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.