IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v75y2021i3p299-323.html
   My bibliography  Save this article

Bayesian survival model induced by frailty for lifetime with long‐term survivors

Author

Listed:
  • Vicente G. Cancho
  • Gladys D. C. Barriga
  • Gauss M. Cordeiro
  • Edwin M. M. Ortega
  • Adriano K. Suzuki

Abstract

It is introduced the proportional hazards frailty model to allow a discrete distribution for the frailty variable. Frailty zero can be interpreted as being immune or cured. It is defined a class of survival models induced by a discrete frailty having a mixed Poisson distribution, which can account for unobserved dispersion. Further, a new regression to evaluate the effects of covariates in the cure fraction is constructed. Several former cure survival models are special cases of the proposed modeling framework. The inferential approach is based on Bayesian methods. Some simulation results are provided to assess the performance of the new regression. Its importance is illustrated by means of an application to colorectal cancer data.

Suggested Citation

  • Vicente G. Cancho & Gladys D. C. Barriga & Gauss M. Cordeiro & Edwin M. M. Ortega & Adriano K. Suzuki, 2021. "Bayesian survival model induced by frailty for lifetime with long‐term survivors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 299-323, August.
  • Handle: RePEc:bla:stanee:v:75:y:2021:i:3:p:299-323
    DOI: 10.1111/stan.12236
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12236
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vicente Cancho & Josemar Rodrigues & Mario de Castro, 2011. "A flexible model for survival data with a cure rate: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(1), pages 57-70.
    2. Chen, Ming-Hui & Ibrahim, Joseph G. & Sinha, Debajyoti, 2002. "Bayesian Inference for Multivariate Survival Data with a Cure Fraction," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 101-126, January.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    4. Tsodikov A.D. & Ibrahim J.G. & Yakovlev A.Y., 2003. "Estimating Cure Rates From Survival Data: An Alternative to Two-Component Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1063-1078, January.
    5. Cancho, Vicente G. & Dey, Dipak K. & Lachos, Victor H. & Andrade, Marinho G., 2011. "Bayesian nonlinear regression models with scale mixtures of skew-normal distributions: Estimation and case influence diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 588-602, January.
    6. Lancaster, Tony, 1979. "Econometric Methods for the Duration of Unemployment," Econometrica, Econometric Society, vol. 47(4), pages 939-956, July.
    7. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    8. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cleanderson R. Fidelis & Edwin M. M. Ortega & Gauss M. Cordeiro, 2024. "Residual Analysis for Poisson-Exponentiated Weibull Regression Models with Cure Fraction," Stats, MDPI, vol. 7(2), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guosheng Yin, 2005. "Bayesian Cure Rate Frailty Models with Application to a Root Canal Therapy Study," Biometrics, The International Biometric Society, vol. 61(2), pages 552-558, June.
    2. Jaap H. Abbring & Tim Salimans, 2019. "The Likelihood of Mixed Hitting Times," Papers 1905.03463, arXiv.org, revised Apr 2021.
    3. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    4. Abbring, Jaap H. & Salimans, Tim, 2021. "The likelihood of mixed hitting times," Journal of Econometrics, Elsevier, vol. 223(2), pages 361-375.
    5. Chen, Chyong-Mei & Lu, Tai-Fang C., 2012. "Marginal analysis of multivariate failure time data with a surviving fraction based on semiparametric transformation cure models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 645-655.
    6. Bijwaard, Govert, 2011. "Unobserved Heterogeneity in Multiple-Spell Multiple-States Duration Models," IZA Discussion Papers 5748, Institute of Labor Economics (IZA).
    7. Tang, Nian-Sheng & Tang, An-Min & Pan, Dong-Dong, 2014. "Semiparametric Bayesian joint models of multivariate longitudinal and survival data," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 113-129.
    8. Wienke, Andreas & Kuss, Oliver, 2009. "Random effects Weibull regression model for occupational lifetime," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1249-1250, August.
    9. Lajmi Lakhal-Chaieb & Thierry Duchesne, 2017. "Association measures for bivariate failure times in the presence of a cure fraction," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 517-532, October.
    10. Shuhui Guo & Lihua Xiong & Jie Chen & Shenglian Guo & Jun Xia & Ling Zeng & Chong-Yu Xu, 2023. "Nonstationary Regional Flood Frequency Analysis Based on the Bayesian Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 659-681, January.
    11. Yoram Halevy, 2004. "Diminishing Impatience: Disentangling Time Preference from Uncertain Lifetime," Levine's Bibliography 122247000000000185, UCLA Department of Economics.
    12. Vicente G. Cancho & Márcia A. C. Macera & Adriano K. Suzuki & Francisco Louzada & Katherine E. C. Zavaleta, 2020. "A new long-term survival model with dispersion induced by discrete frailty," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 221-244, April.
    13. Govert Bijwaard, 2014. "Multistate event history analysis with frailty," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(58), pages 1591-1620.
    14. Hess, Wolfgang & Persson, Maria, 2010. "The Duration of Trade Revisited. Continuous-Time vs. Discrete-Time Hazards," Working Papers 2010:1, Lund University, Department of Economics.
    15. Jaap H. Abbring & Gerard J. Van Den Berg, 2007. "The unobserved heterogeneity distribution in duration analysis," Biometrika, Biometrika Trust, vol. 94(1), pages 87-99.
    16. R B Davies, 1984. "A Generalised Beta-Logistic Model for Longitudinal Data with an Application to Residential Mobility," Environment and Planning A, , vol. 16(10), pages 1375-1386, October.
    17. Mojtaba Ganjali & T. Baghfalaki & D. Berridge, 2014. "A Bayesian Analysis of Unobserved Heterogeneity for Unemployment Duration Data in the Presence of Interval Censoring," International Econometric Review (IER), Econometric Research Association, vol. 6(1), pages 24-41, April.
    18. S Reader, 1993. "Unobserved Heterogeneity in Dynamic Discrete Choice Models," Environment and Planning A, , vol. 25(4), pages 495-519, April.
    19. Samson B. Adebayo & Ezra Gayawan, 2022. "A Bivariate Analysis of the Spatial Distributions of Stunting and Wasting Among Children Under-Five in Nigeria," Journal of Development Policy and Practice, , vol. 7(1), pages 31-52, January.
    20. Qu, Xiaomei & Zhou, Jie & Shen, Xiaojing, 2010. "Archimedean copula estimation and model selection via l1-norm symmetric distribution," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 406-414, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:75:y:2021:i:3:p:299-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.