IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v41y2014i1p187-199.html
   My bibliography  Save this article

Bayesian Transformation Models for Multivariate Survival Data

Author

Listed:
  • Mário Castro
  • Ming-Hui Chen
  • Joseph G. Ibrahim
  • John P. Klein

Abstract

type="main" xml:id="sjos12010-abs-0001"> In this paper, we propose a general class of Gamma frailty transformation models for multivariate survival data. The transformation class includes the commonly used proportional hazards and proportional odds models. The proposed class also includes a family of cure rate models. Under an improper prior for the parameters, we establish propriety of the posterior distribution. A novel Gibbs sampling algorithm is developed for sampling from the observed data posterior distribution. A simulation study is conducted to examine the properties of the proposed methodology. An application to a data set from a cord blood transplantation study is also reported.

Suggested Citation

  • Mário Castro & Ming-Hui Chen & Joseph G. Ibrahim & John P. Klein, 2014. "Bayesian Transformation Models for Multivariate Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 187-199, March.
  • Handle: RePEc:bla:scjsta:v:41:y:2014:i:1:p:187-199
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12010
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luis E. Nieto‐Barajas & Guosheng Yin, 2008. "Bayesian Semiparametric Cure Rate Model with an Unknown Threshold," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 540-556, September.
    2. John Geweke, 1991. "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," Staff Report 148, Federal Reserve Bank of Minneapolis.
    3. Tsodikov A.D. & Ibrahim J.G. & Yakovlev A.Y., 2003. "Estimating Cure Rates From Survival Data: An Alternative to Two-Component Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1063-1078, January.
    4. Donglin Zeng & Qingxia Chen & Joseph G. Ibrahim, 2009. "Gamma frailty transformation models for multivariate survival times," Biometrika, Biometrika Trust, vol. 96(2), pages 277-291.
    5. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    6. D. Zeng & D. Y. Lin, 2007. "Maximum likelihood estimation in semiparametric regression models with censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 507-564, September.
    7. Chen, Qingxia & Zeng, Donglin & Ibrahim, Joseph G., 2007. "Sieve Maximum Likelihood Estimation for Regression Models With Covariates Missing at Random," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1309-1317, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoqing Diao & Donglin Zeng & Song Yang, 2013. "Efficient Semiparametric Estimation of Short-Term and Long-Term Hazard Ratios with Right-Censored Data," Biometrics, The International Biometric Society, vol. 69(4), pages 840-849, December.
    2. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    3. Chen, Songxi, 2012. "Estimation in semiparametric models with missing data," MPRA Paper 46216, University Library of Munich, Germany.
    4. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
    5. Christoph Breunig & Peter Haan, 2018. "Nonparametric Regression with Selectively Missing Covariates," Papers 1810.00411, arXiv.org, revised Oct 2020.
    6. Vicente G. Cancho & Gladys D. C. Barriga & Gauss M. Cordeiro & Edwin M. M. Ortega & Adriano K. Suzuki, 2021. "Bayesian survival model induced by frailty for lifetime with long‐term survivors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 299-323, August.
    7. Song Chen & Ingrid Van Keilegom, 2013. "Estimation in semiparametric models with missing data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 785-805, August.
    8. Qi Liu & Chun Li & Valentine Wanga & Bryan E. Shepherd, 2018. "Covariate†adjusted Spearman's rank correlation with probability†scale residuals," Biometrics, The International Biometric Society, vol. 74(2), pages 595-605, June.
    9. Jia Liu & Olivier Toubia, 2018. "A Semantic Approach for Estimating Consumer Content Preferences from Online Search Queries," Marketing Science, INFORMS, vol. 37(6), pages 930-952, November.
    10. Guosheng Yin, 2005. "Bayesian Cure Rate Frailty Models with Application to a Root Canal Therapy Study," Biometrics, The International Biometric Society, vol. 61(2), pages 552-558, June.
    11. Guosheng Yin & Joseph G. Ibrahim, 2005. "A General Class of Bayesian Survival Models with Zero and Nonzero Cure Fractions," Biometrics, The International Biometric Society, vol. 61(2), pages 403-412, June.
    12. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    13. Lee, Jung Wun & Chung, Hwan & Jeon, Saebom, 2021. "Bayesian multivariate latent class profile analysis: Exploring the developmental progression of youth depression and substance use," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    14. Fengchang Lin & Jason P. Fine, 2009. "Pseudomartingale estimating equations for modulated renewal process models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 3-23, January.
    15. Mário de Castro & Ming‐Hui Chen & Yuanye Zhang & Anthony V. D'Amico, 2020. "A Bayesian multi‐risks survival (MRS) model in the presence of double censorings," Biometrics, The International Biometric Society, vol. 76(4), pages 1297-1309, December.
    16. Breunig, Christoph & Haan, Peter, 2021. "Nonparametric regression with selectively missing covariates," Journal of Econometrics, Elsevier, vol. 223(1), pages 28-52.
    17. Guoqing Diao & Guosheng Yin, 2012. "A general transformation class of semiparametric cure rate frailty models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 959-989, October.
    18. James C. Slaughter & Amy H. Herring & John M. Thorp, 2009. "A Bayesian Latent Variable Mixture Model for Longitudinal Fetal Growth," Biometrics, The International Biometric Society, vol. 65(4), pages 1233-1242, December.
    19. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    20. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:41:y:2014:i:1:p:187-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.