IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i9p2018-2030.html
   My bibliography  Save this article

Maximum likelihood inference for the Cox regression model with applications to missing covariates

Author

Listed:
  • Chen, Ming-Hui
  • Ibrahim, Joseph G.
  • Shao, Qi-Man

Abstract

In this paper, we carry out an in-depth theoretical investigation for existence of maximum likelihood estimates for the Cox model [D.R. Cox, Regression models and life tables (with discussion), Journal of the Royal Statistical Society, Series B 34 (1972) 187-220; D.R. Cox, Partial likelihood, Biometrika 62 (1975) 269-276] both in the full data setting as well as in the presence of missing covariate data. The main motivation for this work arises from missing data problems, where models can easily become difficult to estimate with certain missing data configurations or large missing data fractions. We establish necessary and sufficient conditions for existence of the maximum partial likelihood estimate (MPLE) for completely observed data (i.e., no missing data) settings as well as sufficient conditions for existence of the maximum likelihood estimate (MLE) for survival data with missing covariates via a profile likelihood method. Several theorems are given to establish these conditions. A real dataset from a cancer clinical trial is presented to further illustrate the proposed methodology.

Suggested Citation

  • Chen, Ming-Hui & Ibrahim, Joseph G. & Shao, Qi-Man, 2009. "Maximum likelihood inference for the Cox regression model with applications to missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2018-2030, October.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:9:p:2018-2030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00071-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vivekananda Roy & James P. Hobert, 2007. "Convergence rates and asymptotic standard errors for Markov chain Monte Carlo algorithms for Bayesian probit regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 607-623, September.
    2. Chen M-H. & Ibrahim J.G. & Shao Q-M., 2004. "Propriety of the Posterior Distribution and Existence of the MLE for Regression Models With Covariates Missing at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 421-438, January.
    3. Ming-Hui Chen & Joseph G. Ibrahim & Qi-Man Shao, 2006. "Posterior propriety and computation for the Cox regression model with applications to missing covariates," Biometrika, Biometrika Trust, vol. 93(4), pages 791-807, December.
    4. Traci Leong & Stuart R. Lipsitz & Joseph G. Ibrahim, 2001. "Incomplete covariates in the Cox model with applications to biological marker data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(4), pages 467-484.
    5. J. G. Ibrahim & S. R. Lipsitz & M.‐H. Chen, 1999. "Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 173-190.
    6. Ming‐Hui Chen & Joseph G. Ibrahim, 2001. "Maximum Likelihood Methods for Cure Rate Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 57(1), pages 43-52, March.
    7. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    8. Torben Martinussen, 1999. "Cox Regression with Incomplete Covariate Measurements using the EM‐algorithm," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(4), pages 479-491, December.
    9. Lan Huang & Ming-Hui Chen & Joseph G. Ibrahim, 2005. "Bayesian Analysis for Generalized Linear Models with Nonignorably Missing Covariates," Biometrics, The International Biometric Society, vol. 61(3), pages 767-780, September.
    10. Amy H. Herring & Joseph G. Ibrahim & Stuart R. Lipsitz, 2004. "Non‐ignorable missing covariate data in survival analysis: a case‐study of an International Breast Cancer Study Group trial," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(2), pages 293-310, April.
    11. Amy H. Herring & Joseph G. Ibrahim & Stuart R. Lipsitz, 2002. "Frailty Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 58(1), pages 98-109, March.
    12. Herring A. H & Ibrahim J. G, 2001. "Likelihood-Based Methods for Missing Covariates in the Cox Proportional Hazards Model," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 292-302, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mário de Castro & Ming‐Hui Chen & Yuanye Zhang & Anthony V. D'Amico, 2020. "A Bayesian multi‐risks survival (MRS) model in the presence of double censorings," Biometrics, The International Biometric Society, vol. 76(4), pages 1297-1309, December.
    2. Lubomír Štěpánek & Filip Habarta & Ivana Malá & Ladislav Štěpánek & Marie Nakládalová & Alena Boriková & Luboš Marek, 2023. "Machine Learning at the Service of Survival Analysis: Predictions Using Time-to-Event Decomposition and Classification Applied to a Decrease of Blood Antibodies against COVID-19," Mathematics, MDPI, vol. 11(4), pages 1-27, February.
    3. Peter A. F. Fraser‐Mackenzie & Tiejun Ma & Ming‐Chien Sung & Johnnie E. V. Johnson, 2019. "Let's Call it Quits: Break‐Even Effects in the Decision to Stop Taking Risks," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1560-1581, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Eftekhari Mahabadi & M. Ganjali, 2012. "An index of local sensitivity to non-ignorability for parametric survival models with potential non-random missing covariate: an application to the SEER cancer registry data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2327-2348, July.
    2. Joseph Ibrahim & Geert Molenberghs, 2009. "Missing data methods in longitudinal studies: a review," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 1-43, May.
    3. Chen, Qingxia & Ibrahim, Joseph G. & Chen, Ming-Hui & Senchaudhuri, Pralay, 2008. "Theory and inference for regression models with missing responses and covariates," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1302-1331, July.
    4. Hongbin Zhang & Lang Wu, 2018. "A non‐linear model for censored and mismeasured time varying covariates in survival models, with applications in human immunodeficiency virus and acquired immune deficiency syndrome studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1437-1450, November.
    5. Qingxia Chen & Joseph G. Ibrahim, 2006. "Semiparametric Models for Missing Covariate and Response Data in Regression Models," Biometrics, The International Biometric Society, vol. 62(1), pages 177-184, March.
    6. Lee, Min Cherng & Mitra, Robin, 2016. "Multiply imputing missing values in data sets with mixed measurement scales using a sequence of generalised linear models," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 24-38.
    7. Hongbin Zhang & Lang Wu, 2019. "An approximate method for generalized linear and nonlinear mixed effects models with a mechanistic nonlinear covariate measurement error model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(4), pages 471-499, May.
    8. Nanhua Zhang & Roderick J. Little, 2012. "A Pseudo-Bayesian Shrinkage Approach to Regression with Missing Covariates," Biometrics, The International Biometric Society, vol. 68(3), pages 933-942, September.
    9. Shu Yang & Jae Kwang Kim, 2016. "Likelihood-based Inference with Missing Data Under Missing-at-Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 436-454, June.
    10. Kalyan Das & Angshuman Sarkar, 2014. "Robust inference for generalized partially linear mixed models that account for censored responses and missing covariates -- an application to Arctic data analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2418-2436, November.
    11. Z. I. Kalaylioglu & O. Ozturk, 2013. "Bayesian semiparametric models for nonignorable missing mechanisms in generalized linear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(8), pages 1746-1763, August.
    12. Torben Martinussen & Klaus K. Holst & Thomas H. Scheike, 2016. "Cox regression with missing covariate data using a modified partial likelihood method," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 570-588, October.
    13. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    14. Johnson, Alicia A. & Jones, Galin L., 2015. "Geometric ergodicity of random scan Gibbs samplers for hierarchical one-way random effects models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 325-342.
    15. Brent A. Coull & Alan Agresti, 2000. "Random Effects Modeling of Multiple Binomial Responses Using the Multivariate Binomial Logit-Normal Distribution," Biometrics, The International Biometric Society, vol. 56(1), pages 73-80, March.
    16. Malay Naskar & Kalyan Das & Joseph G. Ibrahim, 2005. "A Semiparametric Mixture Model for Analyzing Clustered Competing Risks Data," Biometrics, The International Biometric Society, vol. 61(3), pages 729-737, September.
    17. Frank Eriksson & Torben Martinussen & Søren Feodor Nielsen, 2020. "Large sample results for frequentist multiple imputation for Cox regression with missing covariate data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 969-996, August.
    18. J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.
    19. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    20. Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:9:p:2018-2030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.