IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v71y2015i2p460-468.html
   My bibliography  Save this article

Improving efficiency in clinical trials using auxiliary information: Application of a multi-state cure model

Author

Listed:
  • A. S. C. Conlon
  • J. M. G. Taylor
  • D. J. Sargent

Abstract

No abstract is available for this item.

Suggested Citation

  • A. S. C. Conlon & J. M. G. Taylor & D. J. Sargent, 2015. "Improving efficiency in clinical trials using auxiliary information: Application of a multi-state cure model," Biometrics, The International Biometric Society, vol. 71(2), pages 460-468, June.
  • Handle: RePEc:bla:biomet:v:71:y:2015:i:2:p:460-468
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12281
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yun Li & Jeremy M. G. Taylor & Roderick J. A. Little, 2011. "A Shrinkage Approach for Estimating a Treatment Effect Using Intermediate Biomarker Data in Clinical Trials," Biometrics, The International Biometric Society, vol. 67(4), pages 1434-1441, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mário de Castro & Ming‐Hui Chen & Yuanye Zhang & Anthony V. D'Amico, 2020. "A Bayesian multi‐risks survival (MRS) model in the presence of double censorings," Biometrics, The International Biometric Society, vol. 76(4), pages 1297-1309, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Layla Parast & Beth Ann Griffin, 2017. "Landmark estimation of survival and treatment effects in observational studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 161-182, April.
    2. Yoshiharu Takagi & Yutaka Kano, 2019. "Bias reduction using surrogate endpoints as auxiliary variables," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 837-852, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:71:y:2015:i:2:p:460-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.