IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v99y2012i2p473-480.html
   My bibliography  Save this article

A new residual for ordinal outcomes

Author

Listed:
  • Chun Li
  • Bryan E. Shepherd

Abstract

We propose a new residual for regression models of ordinal outcomes, defined as E{sign(y,Y)}, where y is the observed outcome and Y is a random variable from the fitted distribution. This new residual is a single value per subject irrespective of the number of categories of the ordinal outcome, contains directional information between the observed value and the fitted distribution, and does not require the assignment of arbitrary numbers to categories. We study its properties, describe its connections with other residuals, ranks and ridits, and demonstrate its use in model diagnostics. Copyright 2012, Oxford University Press.

Suggested Citation

  • Chun Li & Bryan E. Shepherd, 2012. "A new residual for ordinal outcomes," Biometrika, Biometrika Trust, vol. 99(2), pages 473-480.
  • Handle: RePEc:oup:biomet:v:99:y:2012:i:2:p:473-480
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asr073
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    2. Svetlana K. Eden & Chun Li & Bryan E. Shepherd, 2022. "Nonparametric estimation of Spearman's rank correlation with bivariate survival data," Biometrics, The International Biometric Society, vol. 78(2), pages 421-434, June.
    3. Qi Liu & Chun Li & Valentine Wanga & Bryan E. Shepherd, 2018. "Covariate†adjusted Spearman's rank correlation with probability†scale residuals," Biometrics, The International Biometric Society, vol. 74(2), pages 595-605, June.
    4. Daniel Fernández & Louise McMillan & Richard Arnold & Martin Spiess & Ivy Liu, 2022. "Goodness-of-Fit and Generalized Estimating Equation Methods for Ordinal Responses Based on the Stereotype Model," Stats, MDPI, vol. 5(2), pages 1-14, June.
    5. Victor Chernozhukov & Iv'an Fern'andez-Val & Jonas Meier & Aico van Vuuren & Francis Vella, 2024. "Conditional Rank-Rank Regression," Papers 2407.06387, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:99:y:2012:i:2:p:473-480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.