IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i2p421-434.html
   My bibliography  Save this article

Nonparametric estimation of Spearman's rank correlation with bivariate survival data

Author

Listed:
  • Svetlana K. Eden
  • Chun Li
  • Bryan E. Shepherd

Abstract

We study rank‐based approaches to estimate the correlation between two right‐censored variables. With end‐of‐study censoring, it is often impossible to nonparametrically identify the complete bivariate survival distribution, and therefore it is impossible to nonparametrically compute Spearman's rank correlation. As a solution, we propose two measures that can be nonparametrically estimated. The first measure is Spearman's correlation in a restricted region. The second measure is Spearman's correlation for an altered but estimable joint distribution. We describe population parameters for these measures and illustrate how they are similar to and different from the overall Spearman's correlation. We propose consistent estimators of these measures and study their performance through simulations. We illustrate our methods with a study assessing the correlation between the time to viral failure and the time to regimen change among persons living with HIV in Latin America who start antiretroviral therapy.

Suggested Citation

  • Svetlana K. Eden & Chun Li & Bryan E. Shepherd, 2022. "Nonparametric estimation of Spearman's rank correlation with bivariate survival data," Biometrics, The International Biometric Society, vol. 78(2), pages 421-434, June.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:2:p:421-434
    DOI: 10.1111/biom.13453
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13453
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dabrowska, Dorota M., 1989. "Kaplan-Meier estimate on the plane: Weak convergence, LIL, and the bootstrap," Journal of Multivariate Analysis, Elsevier, vol. 29(2), pages 308-325, May.
    2. M. J. Van Der Laan, 1997. "Nonparametric estimators of the bivariate survival function under random censoring," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 51(2), pages 178-200, July.
    3. Stute, W., 1993. "Consistent Estimation Under Random Censorship When Covariables Are Present," Journal of Multivariate Analysis, Elsevier, vol. 45(1), pages 89-103, April.
    4. Qi Liu & Chun Li & Valentine Wanga & Bryan E. Shepherd, 2018. "Covariate†adjusted Spearman's rank correlation with probability†scale residuals," Biometrics, The International Biometric Society, vol. 74(2), pages 595-605, June.
    5. Chun Li & Bryan E. Shepherd, 2012. "A new residual for ordinal outcomes," Biometrika, Biometrika Trust, vol. 99(2), pages 473-480.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pao-sheng Shen, 2014. "Simple nonparametric estimators of the bivariate survival function under random left truncation and right censoring," Computational Statistics, Springer, vol. 29(3), pages 641-659, June.
    2. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    3. Jacobo de Uña-Álvarez & Luís Meira-Machado, 2015. "Nonparametric estimation of transition probabilities in the non-Markov illness-death model: A comparative study," Biometrics, The International Biometric Society, vol. 71(2), pages 364-375, June.
    4. Liang, Weijuan & Zhang, Qingzhao & Ma, Shuangge, 2024. "Hierarchical false discovery rate control for high-dimensional survival analysis with interactions," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    5. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2016. "Tree-based censored regression with applications in insurance," Post-Print hal-01364437, HAL.
    6. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    7. Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    8. Bao, Yanchun & He, Shuyuan & Mei, Changlin, 2007. "The Koul-Susarla-Van Ryzin and weighted least squares estimates for censored linear regression model: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6488-6497, August.
    9. Lopez, O. & Patilea, V., 2009. "Nonparametric lack-of-fit tests for parametric mean-regression models with censored data," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 210-230, January.
    10. Chen, Xiaohong & Fan, Yanqin & Pouzo, Demian & Ying, Zhiliang, 2010. "Estimation and model selection of semiparametric multivariate survival functions under general censorship," Journal of Econometrics, Elsevier, vol. 157(1), pages 129-142, July.
    11. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    12. Guessoum Zohra & Ould-Said Elias, 2009. "On nonparametric estimation of the regression function under random censorship model," Statistics & Risk Modeling, De Gruyter, vol. 26(3), pages 159-177, April.
    13. Weiyu Li & Valentin Patilea, 2018. "A dimension reduction approach for conditional Kaplan–Meier estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 295-315, June.
    14. Sungwan Bang & Soo-Heang Eo & Yong Mee Cho & Myoungshic Jhun & HyungJun Cho, 2016. "Non-crossing weighted kernel quantile regression with right censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 100-121, January.
    15. Pedro H. C. Sant’Anna, 2021. "Nonparametric Tests for Treatment Effect Heterogeneity With Duration Outcomes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 816-832, July.
    16. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2015. "Tree-based censored regression with applications to insurance," Working Papers hal-01141228, HAL.
    17. Cao, Yongxiu & Yu, Jichang, 2023. "Adjusting for unmeasured confounding in survival causal effect using validation data," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    18. Emura, Takeshi & Kao, Fan-Hsuan & Michimae, Hirofumi, 2014. "An improved nonparametric estimator of sub-distribution function for bivariate competing risk models," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 229-241.
    19. Moustafa, Kassem & Hu, Zhen & Mourelatos, Zissimos P. & Baseski, Igor & Majcher, Monica, 2021. "System reliability analysis using component-level and system-level accelerated life testing," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    20. Sanders, Lisanne & Melenberg, Bertrand, 2016. "Estimating the joint survival probabilities of married individuals," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 88-106.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:2:p:421-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.