IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v196y2023ics0047259x23000258.html
   My bibliography  Save this article

On the exploration of regression dependence structures in multidimensional contingency tables with ordinal response variables

Author

Listed:
  • Wei, Zheng
  • Wang, Li
  • Liao, Shu-Min
  • Kim, Daeyoung

Abstract

In this paper, we propose a new data-driven method to explore complex regression dependence structures in a multi-dimensional contingency table with an ordinal response variable and categorical (ordinal or nominal) explanatory variables. The proposed method is based on a sequential decomposition of the overall regression dependence for the data quantified by the checkerboard copula regression association measure (Wei and Kim, 2021) in an informative and interpretable fashion. It can measure the marginal and conditional contributions of any subset of all available explanatory variables to the overall regression association in a hierarchical manner taking into account the order of the explanatory variables. Thus, the proposed method enables a holistic description of various aspects of regression association in a multivariate contingency table, including marginal and conditional associations between an ordinal response variable and a subset of explanatory variables of interest. We investigate theoretical properties of the proposed decomposition method, and we further illustrate its performance through simulation and two real data examples, one from a randomized controlled trial and the other from a longitudinal epidemiological study.

Suggested Citation

  • Wei, Zheng & Wang, Li & Liao, Shu-Min & Kim, Daeyoung, 2023. "On the exploration of regression dependence structures in multidimensional contingency tables with ordinal response variables," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:jmvana:v:196:y:2023:i:c:s0047259x23000258
    DOI: 10.1016/j.jmva.2023.105179
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X23000258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2023.105179?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Zheng & Kim, Daeyoung, 2021. "On exploratory analytic method for multi-way contingency tables with an ordinal response variable and categorical explanatory variables," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    2. Genest, Christian & Nešlehová, Johanna G. & Rémillard, Bruno, 2017. "Asymptotic behavior of the empirical multilinear copula process under broad conditions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 82-110.
    3. Ivy Liu & Alan Agresti, 2005. "The analysis of ordered categorical data: An overview and a survey of recent developments," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(1), pages 1-73, June.
    4. Adrian Dobra & Katherine Buhikire & Joachim G. Voss, 2020. "Identifying mediating variables with graphical models: an application to the study of causal pathways in people living with HIV," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(7), pages 1298-1314, May.
    5. Qi Liu & Chun Li & Valentine Wanga & Bryan E. Shepherd, 2018. "Covariate†adjusted Spearman's rank correlation with probability†scale residuals," Biometrics, The International Biometric Society, vol. 74(2), pages 595-605, June.
    6. Denuit, Michel & Lambert, Philippe, 2005. "Constraints on concordance measures in bivariate discrete data," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 40-57, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Zheng & Kim, Daeyoung, 2021. "On exploratory analytic method for multi-way contingency tables with an ordinal response variable and categorical explanatory variables," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    2. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    3. Nagler, Thomas, 2018. "A generic approach to nonparametric function estimation with mixed data," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 326-330.
    4. Jonas Moss & Steffen Grønneberg, 2023. "Partial Identification of Latent Correlations with Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 241-252, March.
    5. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    6. Baruch, Shmuel & Panayides, Marios & Venkataraman, Kumar, 2017. "Informed trading and price discovery before corporate events," Journal of Financial Economics, Elsevier, vol. 125(3), pages 561-588.
    7. Emanuela Raffinetti & Fabio Aimar, 2019. "MDCgo takes up the association/correlation challenge for grouped ordinal data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 527-561, December.
    8. Katarzyna Bien & Ingmar Nolte & Winfried Pohlmeier, 2008. "A multivariate integer count hurdle model: theory and application to exchange rate dynamics," Studies in Empirical Economics, in: Luc Bauwens & Winfried Pohlmeier & David Veredas (ed.), High Frequency Financial Econometrics, pages 31-48, Springer.
    9. Quinn C, 2009. "Measuring income-related inequalities in health using a parametric dependence function," Health, Econometrics and Data Group (HEDG) Working Papers 09/24, HEDG, c/o Department of Economics, University of York.
    10. Koen Decancq, 2014. "Copula-based measurement of dependence between dimensions of well-being," Oxford Economic Papers, Oxford University Press, vol. 66(3), pages 681-701.
    11. Bambio, Yiriyibin & Bouayad Agha, Salima, 2018. "Land tenure security and investment: Does strength of land right really matter in rural Burkina Faso?," World Development, Elsevier, vol. 111(C), pages 130-147.
    12. Eugenio J. Miravete, 2009. "Competing with Menus of Tariff Options," Journal of the European Economic Association, MIT Press, vol. 7(1), pages 188-205, March.
    13. Mohamad Khaled & Paul Makdissi & Prasada Rao & Myra Yazbeck, 2023. "A Unidimensional Representation of Multidimensional Inequality: An Econometric Analysis of Inequalities in the Arab Region," Working Papers 2304E Classification- D63, University of Ottawa, Department of Economics.
    14. Emanuela Raffinetti & Pier Alda Ferrari, 2021. "A dependence measure flow tree through Monte Carlo simulations," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(2), pages 467-496, April.
    15. Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
    16. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    17. Rasheed A. Adeyemi & Temesgen Zewotir & Shaun Ramroop, 2016. "Semiparametric Multinomial Ordinal Model to Analyze Spatial Patterns of Child Birth Weight in Nigeria," IJERPH, MDPI, vol. 13(11), pages 1-22, November.
    18. Fuchs, Sebastian & Tschimpke, Marco, 2024. "A novel positive dependence property and its impact on a popular class of concordance measures," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    19. José Murteira & Óscar Lourenço, 2011. "Health care utilization and self-assessed health: specification of bivariate models using copulas," Empirical Economics, Springer, vol. 41(2), pages 447-472, October.
    20. M. Pardo, 2011. "Testing equality restrictions in generalized linear models for multinomial data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(2), pages 231-253, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:196:y:2023:i:c:s0047259x23000258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.