IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.09221.html
   My bibliography  Save this paper

Difference-in-Differences with Sample Selection

Author

Listed:
  • Gayani Rathnayake
  • Akanksha Negi
  • Otavio Bartalotti
  • Xueyan Zhao

Abstract

We consider identification of average treatment effects on the treated (ATT) within the difference-in-differences (DiD) framework in the presence of endogenous sample selection. First, we establish that the usual DiD estimand fails to recover meaningful treatment effects, even if selection and treatment assignment are independent. Next, we partially identify the ATT for individuals who are always observed post-treatment regardless of their treatment status, and derive bounds on this parameter under different sets of assumptions about the relationship between sample selection and treatment assignment. Extensions to the repeated cross-section and two-by-two comparisons in the staggered adoption case are explored. Furthermore, we provide identification results for the ATT of three additional empirically relevant latent groups by incorporating outcome mean dominance assumptions which have intuitive appeal in applications. Finally, two empirical illustrations demonstrate the approach's usefulness by revisiting (i) the effect of a job training program on earnings(Calonico & Smith, 2017) and (ii) the effect of a working-from-home policy on employee performance (Bloom, Liang, Roberts, & Ying, 2015).

Suggested Citation

  • Gayani Rathnayake & Akanksha Negi & Otavio Bartalotti & Xueyan Zhao, 2024. "Difference-in-Differences with Sample Selection," Papers 2411.09221, arXiv.org, revised Dec 2024.
  • Handle: RePEc:arx:papers:2411.09221
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.09221
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xuan Chen & Carlos A. Flores, 2015. "Bounds on Treatment Effects in the Presence of Sample Selection and Noncompliance: The Wage Effects of Job Corps," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 523-540, October.
    2. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    3. Michael Lechner & Nuria Rodriguez-Planas & Daniel Fernández Kranz, 2016. "Difference-in-difference estimation by FE and OLS when there is panel non-response," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 2044-2052, August.
    4. Wooldridge, Jeffrey M., 2007. "Inverse probability weighted estimation for general missing data problems," Journal of Econometrics, Elsevier, vol. 141(2), pages 1281-1301, December.
    5. Martin Huber, 2014. "Treatment Evaluation in the Presence of Sample Selection," Econometric Reviews, Taylor & Francis Journals, vol. 33(8), pages 869-905, November.
    6. Sebastian Calónico & Jeffrey Smith, 2017. "The Women of the National Supported Work Demonstration," Journal of Labor Economics, University of Chicago Press, vol. 35(S1), pages 65-97.
    7. Bartalotti, Otávio & Kédagni, Désiré & Possebom, Vitor, 2023. "Identifying marginal treatment effects in the presence of sample selection," Journal of Econometrics, Elsevier, vol. 234(2), pages 565-584.
    8. Nicholas Bloom & James Liang & John Roberts & Zhichun Jenny Ying, 2015. "Does Working from Home Work? Evidence from a Chinese Experiment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(1), pages 165-218.
    9. Markus Frölich & Martin Huber, 2014. "Treatment Evaluation With Multiple Outcome Periods Under Endogeneity and Attrition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1697-1711, December.
    10. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    11. M Niaz Asadullah & Jinnat Ara, 2016. "Evaluating the long-run impact of an innovative anti-poverty programme: evidence using household panel data," Applied Economics, Taylor & Francis Journals, vol. 48(2), pages 107-120, January.
    12. Imai, Kosuke, 2008. "Sharp bounds on the causal effects in randomized experiments with "truncation-by-death"," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 144-149, February.
    13. Susan Athey & Guido W. Imbens, 2006. "Identification and Inference in Nonlinear Difference-in-Differences Models," Econometrica, Econometric Society, vol. 74(2), pages 431-497, March.
    14. Wooldridge, Jeffrey M., 1995. "Selection corrections for panel data models under conditional mean independence assumptions," Journal of Econometrics, Elsevier, vol. 68(1), pages 115-132, July.
    15. Ghanem, Dalia & Hirshleifer, Sarojini & Kédagni, Désiré & Ortiz-Becerra, Karen, 2024. "Correcting attrition bias using changes-in-changes," Journal of Econometrics, Elsevier, vol. 241(2).
    16. Ekaterini Kyriazidou, 1997. "Estimation of a Panel Data Sample Selection Model," Econometrica, Econometric Society, vol. 65(6), pages 1335-1364, November.
    17. Christophe Bell'ego & David Benatia & Vincent Dortet-Bernardet, 2023. "The Chained Difference-in-Differences," Papers 2301.01085, arXiv.org, revised Jan 2025.
    18. Harry J. Holzer & Richard N. Block & Marcus Cheatham & Jack H. Knott, 1993. "Are Training Subsidies for Firms Effective? The Michigan Experience," ILR Review, Cornell University, ILR School, vol. 46(4), pages 625-636, July.
    19. Semykina, Anastasia & Wooldridge, Jeffrey M., 2010. "Estimating panel data models in the presence of endogeneity and selection," Journal of Econometrics, Elsevier, vol. 157(2), pages 375-380, August.
    20. María Engracia Rochina-Barrachina, 1999. "A New Estimator for Panel Data Sample Selection Models," Annals of Economics and Statistics, GENES, issue 55-56, pages 153-181.
    21. Mitali Das & Whitney K. Newey & Francis Vella, 2003. "Nonparametric Estimation of Sample Selection Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(1), pages 33-58.
    22. Elie Tamer, 2010. "Partial Identification in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 167-195, September.
    23. repec:adr:anecst:y:1999:i:55-56:p:06 is not listed on IDEAS
    24. David S. Lee, 2009. "Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(3), pages 1071-1102.
    25. Das, M., 2004. "Simple estimators for nonparametric panel data models with sample attrition," Journal of Econometrics, Elsevier, vol. 120(1), pages 159-180, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hans Fricke & Markus Frölich & Martin Huber & Michael Lechner, 2020. "Endogeneity and non‐response bias in treatment evaluation – nonparametric identification of causal effects by instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 481-504, August.
    2. Alyssa Carlson & Riju Joshi, 2024. "Sample selection in linear panel data models with heterogeneous coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 237-255, March.
    3. Bartalotti, Otávio & Kédagni, Désiré & Possebom, Vitor, 2023. "Identifying marginal treatment effects in the presence of sample selection," Journal of Econometrics, Elsevier, vol. 234(2), pages 565-584.
    4. Malikov, Emir & Kumbhakar, Subal C. & Sun, Yiguo, 2016. "Varying coefficient panel data model in the presence of endogenous selectivity and fixed effects," Journal of Econometrics, Elsevier, vol. 190(2), pages 233-251.
    5. Chirok Han & Goeun Lee, 2017. "Efficient Estimation of Linear Panel Data Models with Sample Selection and Fixed Effects," Discussion Paper Series 1707, Institute of Economic Research, Korea University.
    6. Jia, Lili, 2012. "Land fragmentation and off-farm labor supply in China," Studies on the Agricultural and Food Sector in Transition Economies, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), volume 66, number 66, September.
    7. Markus Frölich & Martin Huber, 2014. "Treatment Evaluation With Multiple Outcome Periods Under Endogeneity and Attrition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1697-1711, December.
    8. Huber, Martin & Meier, Jonas & Wallimann, Hannes, 2022. "Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 22-39.
    9. Elena Lagomarsino & Alessandro Spiganti, 2023. "Risk Aversion and the Size of Desired Debt," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 9(1), pages 369-396, March.
    10. Wladimir Raymond & Pierre Mohnen & Franz Palm & Sybrand Schim van der Loeff, 2007. "The Behavior of the Maximum Likelihood Estimator of Dynamic Panel Data Sample Selection Models," CIRANO Working Papers 2007s-06, CIRANO.
    11. Guastella, Gianni & Moro, Daniele & Sckokai, Paolo & Veneziani, Mario, 2014. "The capitalization of area payments into land rental prices: a panel sample selection approach," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 186375, European Association of Agricultural Economists.
    12. Gianni Guastella & Daniele Moro & Paolo Sckokai & Mario Veneziani, 2018. "The Capitalisation of CAP Payments into Land Rental Prices: A Panel Sample Selection Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 688-704, September.
    13. Possebom, Vitor, 2018. "Sharp bounds on the MTE with sample selection," MPRA Paper 89785, University Library of Munich, Germany.
    14. Adrian (Waikong) Cheung & May Hu & Jörg Schwiebert, 2018. "Corporate social responsibility and dividend policy," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(3), pages 787-816, September.
    15. Güzin Bayar, 2018. "Estimating export equations: a survey of the literature," Empirical Economics, Springer, vol. 54(2), pages 629-672, March.
    16. Michela Bia & German Blanco & Marie Valentova, 2021. "The Causal Impact of Taking Parental Leave on Wages: Evidence from 2005 to 2015," LISER Working Paper Series 2021-08, Luxembourg Institute of Socio-Economic Research (LISER).
    17. Xiaolin Sun & Xueyan Zhao & D. S. Poskitt, 2024. "Partially Identified Heterogeneous Treatment Effect with Selection: An Application to Gender Gaps," Papers 2410.01159, arXiv.org, revised Oct 2024.
    18. Phillip Heiler & Asbj{o}rn Kaufmann & Bezirgen Veliyev, 2024. "Treatment Evaluation at the Intensive and Extensive Margins," Papers 2412.11179, arXiv.org.
    19. D'Addio, Anna Cristina & De Greef, Isabelle & Rosholm, Michael, 2002. "Assessing Unemployment Traps in Belgium Using Panel Data Sample Selection Models," IZA Discussion Papers 669, Institute of Labor Economics (IZA).
    20. McGovern, Mark E. & Canning, David & Bärnighausen, Till, 2018. "Accounting for non-response bias using participation incentives and survey design: An application using gift vouchers," Economics Letters, Elsevier, vol. 171(C), pages 239-244.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.09221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.