IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v96y2016icp24-39.html
   My bibliography  Save this article

Simultaneous mean and covariance estimation of partially linear models for longitudinal data with missing responses and covariate measurement error

Author

Listed:
  • Qin, Guoyou
  • Zhang, Jiajia
  • Zhu, Zhongyi

Abstract

Missing responses and covariate measurement error are very commonly seen in practice. New estimating equations are developed to simultaneously estimate the mean and covariance under a partially linear model for longitudinal data with missing responses and covariate measurement error. Specifically, a novel approach is proposed to handle measurement error by using independent replicate measurements. Compared with existing methods, the proposed method requires fewer assumptions. For example, it does not require to specify the distribution of the mismeasured covariate or the measurement error, and does not need a parametric model to estimate the probability of being observed or to impute the missing responses. Additionally, the proposed estimating equations are easy to implement in most popular statistical softwares by applying existing algorithms for standard generalized estimating equations. The asymptotic properties of the proposed estimators are established under regularity conditions, and simulation studies demonstrate desired properties. Finally, the proposed method is applied to data from the Lifestyle Education for Activity and Nutrition (LEAN) study. This data analysis confirms the effectiveness of the intervention in producing weight loss at month nine.

Suggested Citation

  • Qin, Guoyou & Zhang, Jiajia & Zhu, Zhongyi, 2016. "Simultaneous mean and covariance estimation of partially linear models for longitudinal data with missing responses and covariate measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 24-39.
  • Handle: RePEc:eee:csdana:v:96:y:2016:i:c:p:24-39
    DOI: 10.1016/j.csda.2015.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315002698
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Y. Yi & W. Liu & Lang Wu, 2011. "Simultaneous Inference and Bias Analysis for Longitudinal Data with Covariate Measurement Error and Missing Responses," Biometrics, The International Biometric Society, vol. 67(1), pages 67-75, March.
    2. Jianhua Z. Huang & Liangyue Zhang & Lan Zhou, 2007. "Efficient Estimation in Marginal Partially Linear Models for Longitudinal/Clustered Data Using Splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(3), pages 451-477, September.
    3. He, Xuming & Fung, Wing K. & Zhu, Zhongyi, 2005. "Robust Estimation in Generalized Partial Linear Models for Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1176-1184, December.
    4. Qu, Annie & Lindsay, Bruce G. & Lu, Lin, 2010. "Highly Efficient Aggregate Unbiased Estimating Functions Approach for Correlated Data With Missing at Random," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 194-204.
    5. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    6. Zhongyi Zhu & Wing K. Fung & Xuming He, 2008. "On the asymptotics of marginal regression splines with longitudinal data," Biometrika, Biometrika Trust, vol. 95(4), pages 907-917.
    7. Baojiang Chen & Xiao-Hua Zhou, 2013. "Generalized Partially Linear Models for Incomplete Longitudinal Data In the Presence of Population-Level Information," Biometrics, The International Biometric Society, vol. 69(2), pages 386-395, June.
    8. Huang Y. & Wang C.Y., 2001. "Consistent Functional Methods for Logistic Regression With Errors in Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1469-1482, December.
    9. He, Xuming & Shi, Peide, 1996. "Bivariate Tensor-Product B-Splines in a Partly Linear Model," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 162-181, August.
    10. Wenqin Pan & Donglin Zeng & Xihong Lin, 2009. "Estimation in Semiparametric Transition Measurement Error Models for Longitudinal Data," Biometrics, The International Biometric Society, vol. 65(3), pages 728-736, September.
    11. C. Y. Wang & Yijian Huang & Edward C. Chao & Marjorie K. Jeffcoat, 2008. "Expected Estimating Equations for Missing Data, Measurement Error, and Misclassification, with Application to Longitudinal Nonignorable Missing Data," Biometrics, The International Biometric Society, vol. 64(1), pages 85-95, March.
    12. Grace Y. Yi & Yanyuan Ma & Raymond J. Carroll, 2012. "A functional generalized method of moments approach for longitudinal studies with missing responses and covariate measurement error," Biometrika, Biometrika Trust, vol. 99(1), pages 151-165.
    13. Wei Liu & Lang Wu, 2007. "Simultaneous Inference for Semiparametric Nonlinear Mixed-Effects Models with Covariate Measurement Errors and Missing Responses," Biometrics, The International Biometric Society, vol. 63(2), pages 342-350, June.
    14. Samiran Sinha & Yanyuan Ma, 2014. "Semiparametric analysis of linear transformation models with covariate measurement errors," Biometrics, The International Biometric Society, vol. 70(1), pages 21-32, March.
    15. Xuming He, 2002. "Estimation in a semiparametric model for longitudinal data with unspecified dependence structure," Biometrika, Biometrika Trust, vol. 89(3), pages 579-590, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Zhang, Jiajia, 2022. "Empirical likelihood inference for longitudinal data with covariate measurement errors: An application to the LEAN study," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    2. Lin, Huiming & Qin, Guoyou & Zhang, Jiajia & Zhu, Zhongyi, 2018. "Analysis of longitudinal data with covariate measurement error and missing responses: An improved unbiased estimating equation," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 104-112.
    3. Mengli Zhang & Yang Bai, 2021. "On the use of repeated measurement errors in linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 779-803, July.
    4. Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Zhang, Jiajia, 2018. "Robust estimation in linear regression models for longitudinal data with covariate measurement errors and outliers," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 261-275.
    5. Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Xu, Wanghong, 2019. "A novel robust approach for analysis of longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 83-95.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huiming Lin & Bo Fu & Guoyou Qin & Zhongyi Zhu, 2017. "Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts," Biometrics, The International Biometric Society, vol. 73(4), pages 1132-1139, December.
    2. Yujing Shao & Lei Wang, 2022. "Generalized partial linear models with nonignorable dropouts," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 223-252, February.
    3. Lin, Huiming & Qin, Guoyou & Zhang, Jiajia & Zhu, Zhongyi, 2018. "Analysis of longitudinal data with covariate measurement error and missing responses: An improved unbiased estimating equation," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 104-112.
    4. Mozhgan Taavoni & Mohammad Arashi & Samuel Manda, 2023. "Multicollinearity and Linear Predictor Link Function Problems in Regression Modelling of Longitudinal Data," Mathematics, MDPI, vol. 11(3), pages 1-9, January.
    5. Glen McGee & Marianthi‐Anna Kioumourtzoglou & Marc G. Weisskopf & Sebastien Haneuse & Brent A. Coull, 2020. "On the interplay between exposure misclassification and informative cluster size," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1209-1226, November.
    6. Mao, Jie & Zhu, Zhongyi & Fung, Wing K., 2011. "Joint estimation of mean-covariance model for longitudinal data with basis function approximations," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 983-992, February.
    7. Tang Qingguo, 2009. "Asymptotic normality of M-estimators in a semiparametric model with longitudinal data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 69(1), pages 55-67, January.
    8. Firouzeh Noghrehchi & Jakub Stoklosa & Spiridon Penev, 2020. "Multiple imputation and functional methods in the presence of measurement error and missingness in explanatory variables," Computational Statistics, Springer, vol. 35(3), pages 1291-1317, September.
    9. Qin, Guoyou & Zhu, Zhongyi, 2007. "Robust estimation in generalized semiparametric mixed models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1658-1683, September.
    10. Lin, Fangzheng & Tang, Yanlin & Zhu, Zhongyi, 2020. "Weighted quantile regression in varying-coefficient model with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    11. Guoyou Qin & Zhongyi Zhu & Wing Fung, 2012. "Robust estimation of the generalised partial linear model with missing covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 517-530.
    12. Ibacache-Pulgar, Germán & Paula, Gilberto A., 2011. "Local influence for Student-t partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1462-1478, March.
    13. Zou, Yubo & Zhang, Jiajia & Qin, Guoyou, 2011. "A semiparametric accelerated failure time partial linear model and its application to breast cancer," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1479-1487, March.
    14. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    15. Ganggang Xu & Suojin Wang & Jianhua Z. Huang, 2014. "Focused information criterion and model averaging based on weighted composite quantile regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 365-381, June.
    16. Haibo Zhou & Guoyou Qin & Matthew P. Longnecker, 2011. "A Partial Linear Model in the Outcome-Dependent Sampling Setting to Evaluate the Effect of Prenatal PCB Exposure on Cognitive Function in Children," Biometrics, The International Biometric Society, vol. 67(3), pages 876-885, September.
    17. Kangning Wang & Lu Lin, 2019. "Robust and efficient estimator for simultaneous model structure identification and variable selection in generalized partial linear varying coefficient models with longitudinal data," Statistical Papers, Springer, vol. 60(5), pages 1649-1676, October.
    18. Ying Lu & Jiang Du & Zhimeng Sun, 2014. "Functional partially linear quantile regression model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 317-332, February.
    19. Rui Li & Chenlei Leng & Jinhong You, 2017. "A Semiparametric Regression Model for Longitudinal Data with Non-stationary Errors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 932-950, December.
    20. Du, Jiang & Sun, Zhimeng & Xie, Tianfa, 2013. "M-estimation for the partially linear regression model under monotonic constraints," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1353-1363.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:96:y:2016:i:c:p:24-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.