IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v69y2007i1p101-122.html
   My bibliography  Save this article

Empirical‐likelihood‐based inference in missing response problems and its application in observational studies

Author

Listed:
  • Jing Qin
  • Biao Zhang

Abstract

Summary. The problem of missing response data is ubiquitous in medical and social science studies. In the case of responses that are missing at random (depending on some covariate information), analyses focused only on the complete data may lead to biased results. Various debias methods have been extensively studied in the literature, particularly the weighting method that was motivated by Horvitz and Thompson's estimators. To improve efficiency, Robins, Rotnitzky and Zhao proposed augmented estimating equations based on corrected complete‐case analyses. A nice feature of the augmented method is its ‘double robustness’, i.e. the estimator that is derived from the augmented method is asymptotically unbiased if either the underlying missing data mechanism or the underlying regression function is correctly specified. Furthermore, the augmented estimator can achieve full efficiency if both the missing data mechanism and the regression function are correctly specified. In general, however, it is very difficult to specify the regression function correctly, especially when the dimension of covariates is high— this is the so‐called curse of dimensionality problem. The augmented estimator has much lower efficiency if the ‘working regression model’ is not close to the true regression model. In this paper, the empirical likelihood method is employed to seek a constrained empirical likelihood estimation of mean response with the assumption that responses are missing at random. The empirical‐likelihood‐based estimators enjoy the double‐robustness property. Moreover, it is possible that the empirical‐likelihood‐based inference can produce asymptotically unbiased and efficient estimators even if the true regression function is not completely known. Simulation results indicate that the empirical‐likelihood‐based estimators are very robust to a misspecification of the propensity score and dominate other competitors in the sense of having smaller mean‐square errors. Methods that are developed in this paper have a nice application in observational causal inferences. The propensity score is used to adjust for differences in pretreatment variables in the estimation of average treatment effects.

Suggested Citation

  • Jing Qin & Biao Zhang, 2007. "Empirical‐likelihood‐based inference in missing response problems and its application in observational studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 101-122, February.
  • Handle: RePEc:bla:jorssb:v:69:y:2007:i:1:p:101-122
    DOI: 10.1111/j.1467-9868.2007.00579.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2007.00579.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2007.00579.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tan, Zhiqiang, 2006. "A Distributional Approach for Causal Inference Using Propensity Scores," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1619-1637, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uysal, S. Derya, 2013. "Doubly Robust Estimation of Causal Effects with Multivalued Treatments," Economics Series 297, Institute for Advanced Studies.
    2. Yu-Jen Cheng & Mei-Cheng Wang, 2012. "Estimating Propensity Scores and Causal Survival Functions Using Prevalent Survival Data," Biometrics, The International Biometric Society, vol. 68(3), pages 707-716, September.
    3. Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
    4. Xiaogang Duan & Guosheng Yin, 2017. "Ensemble Approaches to Estimating the Population Mean with Missing Response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 899-917, December.
    5. Zhiwei Zhang & Zhen Chen & James F. Troendle & Jun Zhang, 2012. "Causal Inference on Quantiles with an Obstetric Application," Biometrics, The International Biometric Society, vol. 68(3), pages 697-706, September.
    6. Yu-Jen Cheng & Mei-Cheng Wang, 2015. "Causal estimation using semiparametric transformation models under prevalent sampling," Biometrics, The International Biometric Society, vol. 71(2), pages 302-312, June.
    7. Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Papers 2206.08503, arXiv.org, revised Apr 2024.
    8. Yang Ning & Sida Peng & Jing Tao, 2020. "Doubly Robust Semiparametric Difference-in-Differences Estimators with High-Dimensional Data," Papers 2009.03151, arXiv.org.
    9. Wang, Qihua & Su, Miaomiao & Wang, Ruoyu, 2021. "A beyond multiple robust approach for missing response problem," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    10. Nathan Kallus, 2023. "Treatment Effect Risk: Bounds and Inference," Management Science, INFORMS, vol. 69(8), pages 4579-4590, August.
    11. Han, Peisong, 2012. "A note on improving the efficiency of inverse probability weighted estimator using the augmentation term," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2221-2228.
    12. Karel Vermeulen & Stijn Vansteelandt, 2015. "Bias-Reduced Doubly Robust Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1024-1036, September.
    13. Anastasios A. Tsiatis & Marie Davidian & Weihua Cao, 2011. "Improved Doubly Robust Estimation When Data Are Monotonely Coarsened, with Application to Longitudinal Studies with Dropout," Biometrics, The International Biometric Society, vol. 67(2), pages 536-545, June.
    14. Helene Boistard & Guillaume Chauvet & David Haziza, 2016. "Doubly Robust Inference for the Distribution Function in the Presence of Missing Survey Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 683-699, September.
    15. Tan Zhiqiang, 2008. "Comment: Improved Local Efficiency and Double Robustness," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-11, June.
    16. Nathan Kallus, 2022. "Treatment Effect Risk: Bounds and Inference," Papers 2201.05893, arXiv.org, revised Jul 2022.
    17. Słoczyński, Tymon & Wooldridge, Jeffrey M., 2018. "A General Double Robustness Result For Estimating Average Treatment Effects," Econometric Theory, Cambridge University Press, vol. 34(1), pages 112-133, February.
    18. Guo, Donglin & Xue, Liugen & Hu, Yuqin, 2017. "Covariate-balancing-propensity-score-based inference for linear models with missing responses," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 139-145.
    19. Bryan S. Graham & Cristine Campos de Xavier Pinto & Daniel Egel, 2016. "Efficient Estimation of Data Combination Models by the Method of Auxiliary-to-Study Tilting (AST)," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 288-301, April.
    20. repec:bla:istatr:v:83:y:2015:i:3:p:449-471 is not listed on IDEAS
    21. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:69:y:2007:i:1:p:101-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.