IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v23y2011i2p497-511.html
   My bibliography  Save this article

Empirical likelihood for partially linear models with missing responses at random

Author

Listed:
  • Yongsong Qin
  • Jianjun Li

Abstract

Suppose that we have a partially linear model Yi=X′iβ+g(Ti)+εi with E(ε|X, T)=0, where {Xi, Ti, i=1, …, n} are random and observed completely, and {Yi, i=1, …, n} are missing at random (MAR). Empirical likelihood (EL) ratio statistics for the regression coefficient β and the nonparametric function g(t0) for fixed t0∈(0, 1) are constructed based on the inverse probability weighted imputation approach, which asymptotically have χ2-type distributions. These results are used to obtain EL-based confidence regions for β and g(t0). Results of a simulation study on the finite sample performance of EL-based confidence regions are presented.

Suggested Citation

  • Yongsong Qin & Jianjun Li, 2011. "Empirical likelihood for partially linear models with missing responses at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 497-511.
  • Handle: RePEc:taf:gnstxx:v:23:y:2011:i:2:p:497-511
    DOI: 10.1080/10485252.2010.531134
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2010.531134
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2010.531134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Jian & Lau, Tai-Shing, 2000. "Empirical Likelihood for Partially Linear Models," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 132-148, January.
    2. Wang, Qihua & Sun, Zhihua, 2007. "Estimation in partially linear models with missing responses at random," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1470-1493, August.
    3. Liang H. & Wang S. & Robins J.M. & Carroll R.J., 2004. "Estimation in Partially Linear Models With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 357-367, January.
    4. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    5. Hamilton, Scott A. & Truong, Young K., 1997. "Local Linear Estimation in Partly Linear Models," Journal of Multivariate Analysis, Elsevier, vol. 60(1), pages 1-19, January.
    6. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    7. Rice, John, 1986. "Convergence rates for partially splined models," Statistics & Probability Letters, Elsevier, vol. 4(4), pages 203-208, June.
    8. Wang, Qi-Hua & Jing, Bing-Yi, 1999. "Empirical likelihood for partial linear models with fixed designs," Statistics & Probability Letters, Elsevier, vol. 41(4), pages 425-433, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaofeng Lv & Rui Li, 2013. "Smoothed empirical likelihood analysis of partially linear quantile regression models with missing response variables," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 317-347, October.
    2. Qiu, Jin & Ma, Qing & Wu, Lang, 2019. "A moving blocks empirical likelihood method for panel linear fixed effects models with serial correlations and cross-sectional dependences," Economic Modelling, Elsevier, vol. 83(C), pages 394-405.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi-Hua Wang, 2009. "Statistical estimation in partial linear models with covariate data missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 47-84, March.
    2. Xue, Liugen & Xue, Dong, 2011. "Empirical likelihood for semiparametric regression model with missing response data," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 723-740, April.
    3. Ibacache-Pulgar, Germán & Paula, Gilberto A., 2011. "Local influence for Student-t partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1462-1478, March.
    4. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    5. M. Hristache & V. Patilea, 2017. "Conditional moment models with data missing at random," Biometrika, Biometrika Trust, vol. 104(3), pages 735-742.
    6. Xiaohui Liu & Zhizhong Wang & Xuemei Hu, 2011. "Testing heteroscedasticity in partially linear models with missing covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 321-337.
    7. Zhangong Zhou & Linjun Tang, 2019. "Testing for parametric component of partially linear models with missing covariates," Statistical Papers, Springer, vol. 60(3), pages 747-760, June.
    8. Qin, Guoyou & Bai, Yang & Zhu, Zhongyi, 2012. "Robust empirical likelihood inference for generalized partial linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 32-44.
    9. Liang, Hua, 2006. "Estimation in partially linear models and numerical comparisons," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 675-687, February.
    10. Bindele, Huybrechts F. & Abebe, Ash, 2015. "Semi-parametric rank regression with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 117-132.
    11. Tianfa Xie & Zhihua Sun & Liuquan Sun, 2012. "A consistent model specification test for a partial linear model with covariates missing at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 841-856, December.
    12. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    13. Majid Mojirsheibani & Timothy Reese, 2017. "Kernel regression estimation for incomplete data with applications," Statistical Papers, Springer, vol. 58(1), pages 185-209, March.
    14. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    15. Chen, Songxi, 2012. "Estimation in semiparametric models with missing data," MPRA Paper 46216, University Library of Munich, Germany.
    16. Wangli Xu & Xu Guo & Lixing Zhu, 2012. "Goodness-of-fitting for partial linear model with missing response at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 103-118.
    17. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    18. Nengxiang Ling & Rui Kan & Philippe Vieu & Shuyu Meng, 2019. "Semi-functional partially linear regression model with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 39-70, January.
    19. Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
    20. Liang, Hua & Su, Haiyan & Zou, Guohua, 2008. "Confidence intervals for a common mean with missing data with applications in an AIDS study," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 546-553, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:23:y:2011:i:2:p:497-511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.