IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v63y2007i4p1152-1163.html
   My bibliography  Save this article

Comparison of Group Testing Algorithms for Case Identification in the Presence of Test Error

Author

Listed:
  • Hae-Young Kim
  • Michael G. Hudgens
  • Jonathan M. Dreyfuss
  • Daniel J. Westreich
  • Christopher D. Pilcher

Abstract

No abstract is available for this item.

Suggested Citation

  • Hae-Young Kim & Michael G. Hudgens & Jonathan M. Dreyfuss & Daniel J. Westreich & Christopher D. Pilcher, 2007. "Comparison of Group Testing Algorithms for Case Identification in the Presence of Test Error," Biometrics, The International Biometric Society, vol. 63(4), pages 1152-1163, December.
  • Handle: RePEc:bla:biomet:v:63:y:2007:i:4:p:1152-1163
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2007.00817.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toby Berger & James W. Mandell & P. Subrahmanya, 2000. "Maximally Efficient Two-Stage Screening," Biometrics, The International Biometric Society, vol. 56(3), pages 833-840, September.
    2. Nandini Dendukuri & Lawrence Joseph, 2001. "Bayesian Approaches to Modeling the Conditional Dependence Between Multiple Diagnostic Tests," Biometrics, The International Biometric Society, vol. 57(1), pages 158-167, March.
    3. Lawrence M. Wein & Stefanos A. Zenios, 1996. "Pooled Testing for HIV Screening: Capturing the Dilution Effect," Operations Research, INFORMS, vol. 44(4), pages 543-569, August.
    4. H. M. Finucan, 1964. "The Blood Testing Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 13(1), pages 43-50, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua M. Tebbs & Christopher S. McMahan & Christopher R. Bilder, 2013. "Two-Stage Hierarchical Group Testing for Multiple Infections with Application to the Infertility Prevention Project," Biometrics, The International Biometric Society, vol. 69(4), pages 1064-1073, December.
    2. Xianzheng Huang & Md Shamim Sarker Warasi, 2017. "Maximum Likelihood Estimators in Regression Models for Error-prone Group Testing Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 918-931, December.
    3. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2020. "Optimal Group Testing: Structural Properties and Robust Solutions, with Application to Public Health Screening," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 895-911, October.
    4. Christopher S. McMahan & Joshua M. Tebbs & Christopher R. Bilder, 2012. "Two-Dimensional Informative Array Testing," Biometrics, The International Biometric Society, vol. 68(3), pages 793-804, September.
    5. Christopher S. McMahan & Joshua M. Tebbs & Timothy E. Hanson & Christopher R. Bilder, 2017. "Bayesian regression for group testing data," Biometrics, The International Biometric Society, vol. 73(4), pages 1443-1452, December.
    6. Juan Ding & Wenjun Xiong, 2015. "Robust group testing for multiple traits with misclassification," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2115-2125, October.
    7. Peijie Hou & Joshua M. Tebbs & Christopher R. Bilder & Christopher S. McMahan, 2017. "Hierarchical group testing for multiple infections," Biometrics, The International Biometric Society, vol. 73(2), pages 656-665, June.
    8. Chase N. Joyner & Christopher S. McMahan & Joshua M. Tebbs & Christopher R. Bilder, 2020. "From mixed effects modeling to spike and slab variable selection: A Bayesian regression model for group testing data," Biometrics, The International Biometric Society, vol. 76(3), pages 913-923, September.
    9. Christopher S. McMahan & Joshua M. Tebbs & Christopher R. Bilder, 2012. "Informative Dorfman Screening," Biometrics, The International Biometric Society, vol. 68(1), pages 287-296, March.
    10. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2019. "Optimal Risk-Based Group Testing," Management Science, INFORMS, vol. 65(9), pages 4365-4384, September.
    11. Karyn Heavner & Craig Newschaffer & Irva Hertz-Picciotto & Deborah Bennett & Igor Burstyn, 2015. "Pooling Bio-Specimens in the Presence of Measurement Error and Non-Linearity in Dose-Response: Simulation Study in the Context of a Birth Cohort Investigating Risk Factors for Autism Spectrum Disorder," IJERPH, MDPI, vol. 12(11), pages 1-20, November.
    12. Hrayer Aprahamian & Hadi El-Amine, 2022. "Optimal Screening of Populations with Heterogeneous Risk Profiles Under the Availability of Multiple Tests," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 150-164, January.
    13. David Hong & Rounak Dey & Xihong Lin & Brian Cleary & Edgar Dobriban, 2022. "Group testing via hypergraph factorization applied to COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Md S. Warasi & Laura L. Hungerford & Kevin Lahmers, 2022. "Optimizing Pooled Testing for Estimating the Prevalence of Multiple Diseases," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 713-727, December.
    15. Peng Chen & Joshua M. Tebbs & Christopher R. Bilder, 2009. "Group Testing Regression Models with Fixed and Random Effects," Biometrics, The International Biometric Society, vol. 65(4), pages 1270-1278, December.
    16. Samuel D. Lendle & Michael G. Hudgens & Bahjat F. Qaqish, 2012. "Group Testing for Case Identification with Correlated Responses," Biometrics, The International Biometric Society, vol. 68(2), pages 532-540, June.
    17. Hussein El Hajj & Douglas R. Bish & Ebru K. Bish & Denise M. Kay, 2022. "Novel Pooling Strategies for Genetic Testing, with Application to Newborn Screening," Management Science, INFORMS, vol. 68(11), pages 7994-8014, November.
    18. Karl B. Gregory & Dewei Wang & Christopher S. McMahan, 2019. "Adaptive elastic net for group testing," Biometrics, The International Biometric Society, vol. 75(1), pages 13-23, March.
    19. Hae-Young Kim & Michael G. Hudgens, 2009. "Three-Dimensional Array-Based Group Testing Algorithms," Biometrics, The International Biometric Society, vol. 65(3), pages 903-910, September.
    20. Wang, Dewei & McMahan, Christopher S. & Tebbs, Joshua M. & Bilder, Christopher R., 2018. "Group testing case identification with biomarker information," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 156-166.
    21. Xinlei Zuo & Juan Ding & Junjian Zhang & Wenjun Xiong, 2024. "Nonparametric Additive Regression for High-Dimensional Group Testing Data," Mathematics, MDPI, vol. 12(5), pages 1-21, February.
    22. Gustavo Quinderé Saraiva, 2023. "Pool testing with dilution effects and heterogeneous priors," Health Care Management Science, Springer, vol. 26(4), pages 651-672, December.
    23. Pritha Guha, 2022. "Application of Pooled Testing Methodologies in Tackling the COVID-19 Pandemic," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 47(1), pages 7-21, February.
    24. Haoran Jiang & Hongshik Ahn & Xiaolin Li, 2022. "Group Testing with Consideration of the Dilution Effect," Mathematics, MDPI, vol. 10(3), pages 1-14, February.
    25. D. Wang & C. S. McMahan & C. M. Gallagher & K. B. Kulasekera, 2014. "Semiparametric group testing regression models," Biometrika, Biometrika Trust, vol. 101(3), pages 587-598.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pritha Guha, 2022. "Application of Pooled Testing Methodologies in Tackling the COVID-19 Pandemic," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 47(1), pages 7-21, February.
    2. Nandini Dendukuri & Ian Schiller & Lawrence Joseph & Madhukar Pai, 2012. "Bayesian Meta-Analysis of the Accuracy of a Test for Tuberculous Pleuritis in the Absence of a Gold Standard Reference," Biometrics, The International Biometric Society, vol. 68(4), pages 1285-1293, December.
    3. O’Neill, Donal, 2015. "Measuring obesity in the absence of a gold standard," Economics & Human Biology, Elsevier, vol. 17(C), pages 116-128.
    4. Adam Branscum & Timothy Hanson & Ian Gardner, 2008. "Bayesian non-parametric models for regional prevalence estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(5), pages 567-582.
    5. David Hong & Rounak Dey & Xihong Lin & Brian Cleary & Edgar Dobriban, 2022. "Group testing via hypergraph factorization applied to COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Adam J. Branscum & Dunlei Cheng & J. Jack Lee, 2015. "Testing hypotheses about medical test accuracy: considerations for design and inference," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 1106-1119, May.
    7. Yaakov Malinovsky & Paul S. Albert, 2015. "A Note on the Minimax Solution for the Two-Stage Group Testing Problem," The American Statistician, Taylor & Francis Journals, vol. 69(1), pages 45-52, February.
    8. Geoffrey Jones & Wesley O. Johnson, 2016. "A Bayesian Superpopulation Approach to Inference for Finite Populations Based on Imperfect Diagnostic Outcomes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(2), pages 314-327, June.
    9. Bar-Lev, S.K. & Parlar, M. & Perry, D. & Stadje, W. & van der Duyn Schouten, F.A., 2007. "Applications of bulk queues to group testing models with incomplete identification," Other publications TiSEM 0b1bfa5e-c1e6-43ec-9684-1, Tilburg University, School of Economics and Management.
    10. Shaul K. Bar-Lev & Wolfgang Stadje & Frank A. van der Duyn Schouten, 2004. "Optimal Group Testing with Processing Times and Incomplete Identification," Methodology and Computing in Applied Probability, Springer, vol. 6(1), pages 55-72, March.
    11. Fabio Principato & Angela Vullo & Domenica Matranga, 2010. "On implementation of the Gibbs sampler for estimating the accuracy of multiple diagnostic tests," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1335-1354.
    12. Bar-Lev, Shaul K. & Parlar, Mahmut & Perry, David & Stadje, Wolfgang & Van der Duyn Schouten, Frank A., 2007. "Applications of bulk queues to group testing models with incomplete identification," European Journal of Operational Research, Elsevier, vol. 183(1), pages 226-237, November.
    13. Bar-Lev, S.K. & Stadje, W. & van der Duyn Schouten, F.A., 2002. "Hypergeometric Group Testing with Incomplete Information," Other publications TiSEM bbeda767-e037-4441-a6d4-6, Tilburg University, School of Economics and Management.
    14. Yongxi Cheng & Yinfeng Xu, 2014. "An efficient FPRAS type group testing procedure to approximate the number of defectives," Journal of Combinatorial Optimization, Springer, vol. 27(2), pages 302-314, February.
    15. Hae-Young Kim & Michael G. Hudgens, 2009. "Three-Dimensional Array-Based Group Testing Algorithms," Biometrics, The International Biometric Society, vol. 65(3), pages 903-910, September.
    16. Wang, Dewei & McMahan, Christopher S. & Tebbs, Joshua M. & Bilder, Christopher R., 2018. "Group testing case identification with biomarker information," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 156-166.
    17. Bar-Lev, S.K. & Stadje, W. & van der Duyn Schouten, F.A., 2002. "Group Testing Models with Processing Times and Incomplete Identification," Other publications TiSEM dfe0978e-375f-4c44-b647-b, Tilburg University, School of Economics and Management.
    18. Shaul K. Bar‐Lev & Onno Boxma & Andreas Löpker & Wolfgang Stadje & Frank A. Van der Duyn Schouten, 2012. "Group testing procedures with quantitative features and incomplete identification," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(1), pages 39-51, February.
    19. Gustafson Paul, 2010. "Bayesian Inference for Partially Identified Models," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-20, March.
    20. Gustavo Quinderé Saraiva, 2023. "Pool testing with dilution effects and heterogeneous priors," Health Care Management Science, Springer, vol. 26(4), pages 651-672, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:63:y:2007:i:4:p:1152-1163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.