IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v73y2017i2p656-665.html
   My bibliography  Save this article

Hierarchical group testing for multiple infections

Author

Listed:
  • Peijie Hou
  • Joshua M. Tebbs
  • Christopher R. Bilder
  • Christopher S. McMahan

Abstract

No abstract is available for this item.

Suggested Citation

  • Peijie Hou & Joshua M. Tebbs & Christopher R. Bilder & Christopher S. McMahan, 2017. "Hierarchical group testing for multiple infections," Biometrics, The International Biometric Society, vol. 73(2), pages 656-665, June.
  • Handle: RePEc:bla:biomet:v:73:y:2017:i:2:p:656-665
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12589
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toby Berger & James W. Mandell & P. Subrahmanya, 2000. "Maximally Efficient Two-Stage Screening," Biometrics, The International Biometric Society, vol. 56(3), pages 833-840, September.
    2. Michael S. Black & Christopher R. Bilder & Joshua M. Tebbs, 2012. "Group testing in heterogeneous populations by using halving algorithms," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(2), pages 277-290, March.
    3. Paul S. Albert & Lori E. Dodd, 2004. "A Cautionary Note on the Robustness of Latent Class Models for Estimating Diagnostic Error without a Gold Standard," Biometrics, The International Biometric Society, vol. 60(2), pages 427-435, June.
    4. Hae-Young Kim & Michael G. Hudgens & Jonathan M. Dreyfuss & Daniel J. Westreich & Christopher D. Pilcher, 2007. "Comparison of Group Testing Algorithms for Case Identification in the Presence of Test Error," Biometrics, The International Biometric Society, vol. 63(4), pages 1152-1163, December.
    5. Yaakov Malinovsky & Paul S. Albert & Anindya Roy, 2016. "Reader reaction: A note on the evaluation of group testing algorithms in the presence of misclassification," Biometrics, The International Biometric Society, vol. 72(1), pages 299-302, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md S. Warasi & Laura L. Hungerford & Kevin Lahmers, 2022. "Optimizing Pooled Testing for Estimating the Prevalence of Multiple Diseases," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 713-727, December.
    2. Christopher R. Bilder & Joshua M. Tebbs & Christopher S. McMahan, 2019. "Informative group testing for multiplex assays," Biometrics, The International Biometric Society, vol. 75(1), pages 278-288, March.
    3. Wei Zhang & Aiyi Liu & Qizhai Li & Paul S. Albert, 2020. "Nonparametric estimation of distributions and diagnostic accuracy based on group‐tested results with differential misclassification," Biometrics, The International Biometric Society, vol. 76(4), pages 1147-1156, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Dewei & McMahan, Christopher S. & Tebbs, Joshua M. & Bilder, Christopher R., 2018. "Group testing case identification with biomarker information," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 156-166.
    2. Hae-Young Kim & Michael G. Hudgens, 2009. "Three-Dimensional Array-Based Group Testing Algorithms," Biometrics, The International Biometric Society, vol. 65(3), pages 903-910, September.
    3. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2020. "Optimal Group Testing: Structural Properties and Robust Solutions, with Application to Public Health Screening," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 895-911, October.
    4. Hrayer Aprahamian & Hadi El-Amine, 2022. "Optimal Screening of Populations with Heterogeneous Risk Profiles Under the Availability of Multiple Tests," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 150-164, January.
    5. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2019. "Optimal Risk-Based Group Testing," Management Science, INFORMS, vol. 65(9), pages 4365-4384, September.
    6. Christopher S. McMahan & Joshua M. Tebbs & Timothy E. Hanson & Christopher R. Bilder, 2017. "Bayesian regression for group testing data," Biometrics, The International Biometric Society, vol. 73(4), pages 1443-1452, December.
    7. Pritha Guha, 2022. "Application of Pooled Testing Methodologies in Tackling the COVID-19 Pandemic," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 47(1), pages 7-21, February.
    8. Christopher S. McMahan & Joshua M. Tebbs & Christopher R. Bilder, 2012. "Two-Dimensional Informative Array Testing," Biometrics, The International Biometric Society, vol. 68(3), pages 793-804, September.
    9. Paul S. Albert, 2007. "Random Effects Modeling Approaches for Estimating ROC Curves from Repeated Ordinal Tests without a Gold Standard," Biometrics, The International Biometric Society, vol. 63(2), pages 593-602, June.
    10. Donal O'Neill & Olive Sweetman, 2013. "Estimating Obesity Rates in Europe in the Presence of Self-Reporting Errors," Economics Department Working Paper Series n236-13.pdf, Department of Economics, National University of Ireland - Maynooth.
    11. Hae-Young Kim & Michael G. Hudgens & Jonathan M. Dreyfuss & Daniel J. Westreich & Christopher D. Pilcher, 2007. "Comparison of Group Testing Algorithms for Case Identification in the Presence of Test Error," Biometrics, The International Biometric Society, vol. 63(4), pages 1152-1163, December.
    12. O’Neill, Donal, 2015. "Measuring obesity in the absence of a gold standard," Economics & Human Biology, Elsevier, vol. 17(C), pages 116-128.
    13. Karyn Heavner & Craig Newschaffer & Irva Hertz-Picciotto & Deborah Bennett & Igor Burstyn, 2015. "Pooling Bio-Specimens in the Presence of Measurement Error and Non-Linearity in Dose-Response: Simulation Study in the Context of a Birth Cohort Investigating Risk Factors for Autism Spectrum Disorder," IJERPH, MDPI, vol. 12(11), pages 1-20, November.
    14. Robert Cudeck, 2005. "Fitting Psychometric Models with Methods Based on Automatic Differentiation," Psychometrika, Springer;The Psychometric Society, vol. 70(4), pages 599-617, December.
    15. Christopher R. Bilder & Joshua M. Tebbs & Christopher S. McMahan, 2019. "Informative group testing for multiplex assays," Biometrics, The International Biometric Society, vol. 75(1), pages 278-288, March.
    16. Daniel K. Sewell, 2022. "Leveraging network structure to improve pooled testing efficiency," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1648-1662, November.
    17. Leandro García Barrado & Els Coart & Tomasz Burzykowski, 2017. "Estimation of diagnostic accuracy of a combination of continuous biomarkers allowing for conditional dependence between the biomarkers and the imperfect reference-test," Biometrics, The International Biometric Society, vol. 73(2), pages 646-655, June.
    18. Clara Drew & Moses Badio & Dehkontee Dennis & Lisa Hensley & Elizabeth Higgs & Michael Sneller & Mosoka Fallah & Cavan Reilly, 2023. "Simplifying the estimation of diagnostic testing accuracy over time for high specificity tests in the absence of a gold standard," Biometrics, The International Biometric Society, vol. 79(2), pages 1546-1558, June.
    19. Geoffrey Jones & Wesley O. Johnson & Timothy E. Hanson & Ronald Christensen, 2010. "Identifiability of Models for Multiple Diagnostic Testing in the Absence of a Gold Standard," Biometrics, The International Biometric Society, vol. 66(3), pages 855-863, September.
    20. Subtil, Ana & de Oliveira, M. Rosário & Gonçalves, Luzia, 2012. "Conditional dependence diagnostic in the latent class model: A simulation study," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1407-1412.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:73:y:2017:i:2:p:656-665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.