IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v21y2016i2d10.1007_s13253-015-0239-9.html
   My bibliography  Save this article

A Bayesian Superpopulation Approach to Inference for Finite Populations Based on Imperfect Diagnostic Outcomes

Author

Listed:
  • Geoffrey Jones

    (Massey University)

  • Wesley O. Johnson

    (University of California)

Abstract

Common approaches to the analysis of diagnostic outcome data in the absence of a gold standard test employ binomial distributions for the number of infected individuals in each sample, implicitly assuming that the populations are infinite or at least large in relation to the sample size. We present a theoretical framework within which this approach can be justified even for small populations, and describe how this framework can be used to make inferences pertaining to the actual finite populations sampled. The general approach is quite well known in the sample survey literature, but perhaps not outside of it. We show how this approach can be adapted and extended to the modeling of imperfect diagnostic outcomes.

Suggested Citation

  • Geoffrey Jones & Wesley O. Johnson, 2016. "A Bayesian Superpopulation Approach to Inference for Finite Populations Based on Imperfect Diagnostic Outcomes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(2), pages 314-327, June.
  • Handle: RePEc:spr:jagbes:v:21:y:2016:i:2:d:10.1007_s13253-015-0239-9
    DOI: 10.1007/s13253-015-0239-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-015-0239-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-015-0239-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marios P. Georgiadis & Wesley O. Johnson & Ian A. Gardner & Ramanpreet Singh, 2003. "Correlation‐adjusted estimation of sensitivity and specificity of two diagnostic tests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 63-76, January.
    2. Little R.J., 2004. "To Model or Not To Model? Competing Modes of Inference for Finite Population Sampling," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 546-556, January.
    3. Geoffrey Jones & Wesley O. Johnson & Timothy E. Hanson & Ronald Christensen, 2010. "Identifiability of Models for Multiple Diagnostic Testing in the Absence of a Gold Standard," Biometrics, The International Biometric Society, vol. 66(3), pages 855-863, September.
    4. Nandini Dendukuri & Lawrence Joseph, 2001. "Bayesian Approaches to Modeling the Conditional Dependence Between Multiple Diagnostic Tests," Biometrics, The International Biometric Society, vol. 57(1), pages 158-167, March.
    5. Geoffrey Jones & Wesley O. Johnson, 2014. "Prior Elicitation: Interactive Spreadsheet Graphics With Sliders Can Be Fun, and Informative," The American Statistician, Taylor & Francis Journals, vol. 68(1), pages 42-51, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caitlin Ward & Grant D. Brown & Jacob J. Oleson, 2023. "An individual level infectious disease model in the presence of uncertainty from multiple, imperfect diagnostic tests," Biometrics, The International Biometric Society, vol. 79(1), pages 426-436, March.
    2. Adam J. Branscum & Dunlei Cheng & J. Jack Lee, 2015. "Testing hypotheses about medical test accuracy: considerations for design and inference," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 1106-1119, May.
    3. Adam Branscum & Timothy Hanson & Ian Gardner, 2008. "Bayesian non-parametric models for regional prevalence estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(5), pages 567-582.
    4. Leandro García Barrado & Els Coart & Tomasz Burzykowski, 2017. "Estimation of diagnostic accuracy of a combination of continuous biomarkers allowing for conditional dependence between the biomarkers and the imperfect reference-test," Biometrics, The International Biometric Society, vol. 73(2), pages 646-655, June.
    5. Geoffrey Jones & Wesley O. Johnson & Timothy E. Hanson & Ronald Christensen, 2010. "Identifiability of Models for Multiple Diagnostic Testing in the Absence of a Gold Standard," Biometrics, The International Biometric Society, vol. 66(3), pages 855-863, September.
    6. Gustafson Paul, 2010. "Bayesian Inference for Partially Identified Models," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-20, March.
    7. Pierre Bessière & Brandon Hayes & Fabien Filaire & Laetitia Lèbre & Timothée Vergne & Matthieu Pinson & Guillaume Croville & Jean-Luc Guerin, 2023. "Optimizing environmental viral surveillance: bovine serum albumin increases RT-qPCR sensitivity for high pathogenicity avian influenza H5Nx virus detection from dust samples," Post-Print hal-04335181, HAL.
    8. Kunihama, T. & Herring, A.H. & Halpern, C.T. & Dunson, D.B., 2016. "Nonparametric Bayes modeling with sample survey weights," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 41-48.
    9. Marivoet, Wim & De Herdt, Tom, 2017. "From figures to facts: making sense of socio-economic surveys in the Democratic Republic of the Congo (DRC)," IOB Analyses & Policy Briefs 23, Universiteit Antwerpen, Institute of Development Policy (IOB).
    10. G. Jones & W. O. Johnson & W. D. Vink & N. French, 2012. "A Framework for the Joint Modeling of Longitudinal Diagnostic Outcome Data and Latent Infection Status: Application to Investigating the Temporal Relationship between Infection and Disease," Biometrics, The International Biometric Society, vol. 68(2), pages 371-379, June.
    11. Hae-Young Kim & Michael G. Hudgens & Jonathan M. Dreyfuss & Daniel J. Westreich & Christopher D. Pilcher, 2007. "Comparison of Group Testing Algorithms for Case Identification in the Presence of Test Error," Biometrics, The International Biometric Society, vol. 63(4), pages 1152-1163, December.
    12. J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.
    13. Carol Y. Lin & Lance A. Waller & Robert H. Lyles, 2012. "The likelihood approach for the comparison of medical diagnostic system with multiple binary tests," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1437-1454, December.
    14. David Kaplan & Chansoon Lee, 2018. "Optimizing Prediction Using Bayesian Model Averaging: Examples Using Large-Scale Educational Assessments," Evaluation Review, , vol. 42(4), pages 423-457, August.
    15. Bijak Jakub & Bryant Johan & Gołata Elżbieta & Smallwood Steve, 2021. "Preface," Journal of Official Statistics, Sciendo, vol. 37(3), pages 533-541, September.
    16. Scott Weichenthal & Lawrence Joseph & Patrick Bélisle & André Dufresne, 2010. "Bayesian Estimation of the Probability of Asbestos Exposure from Lung Fiber Counts," Biometrics, The International Biometric Society, vol. 66(2), pages 603-612, June.
    17. Tenan, Simone & Rotger Vallespir, Andreu & Igual, José Manuel & Moya, Óscar & Royle, J. Andrew & Tavecchia, Giacomo, 2013. "Population abundance, size structure and sex-ratio in an insular lizard," Ecological Modelling, Elsevier, vol. 267(C), pages 39-47.
    18. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    19. Hwanhee Hong & Kara E. Rudolph & Elizabeth A. Stuart, 2017. "Bayesian Approach for Addressing Differential Covariate Measurement Error in Propensity Score Methods," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1078-1096, December.
    20. Stamey, James D. & Boese, Doyle H. & Young, Dean M., 2008. "Confidence intervals for parameters of two diagnostic tests in the absence of a gold standard," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1335-1346, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:21:y:2016:i:2:d:10.1007_s13253-015-0239-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.